
About this Tutorial Basics of R Statistics with R Modelling Graphics

An Introduction to the R Environment

Peter Dalgaard

Center for Statistics
Copenhagen Business School

MPAS Lecture April 2010

1 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Outline

About this Tutorial

Basics of R
Objects and arithmetic
Matrix calculus
Important functions
Working with data frames
Programming

Statistics with R

Modelling

Graphics

2 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Practicalities

I Short introduction (approx. 90 min)
I Focus on things relevant to your project
I Script of demos on MPAS web page

4 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Plan

I Elementary things about R
I Data types and some important functions
I Matrix calculus
I Working with data sets
I R as a programming language

I Basic statistics and tests
I Modeling tools
I Elementary Graphics

5 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

The R environment

I Built around the programming language R, an Open
Source dialect of the S language

I R is Free Software, and runs on a variety of platforms (I’ll
be using Linux here).

I Command-line execution based on function calls
I Extensible with user functions
I Workspace containing data and functions
I Various graphics devices (interactive and non-interactive)

7 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Objects and arithmetic

R is a vectorized language

I The basic data type in R is a vector
I Vectors often represent data (e.g. the age for each

participant in a study), but also other things like regression
coefficients, plot limits, cut points, etc.

I Data types: Numeric (integer/double), character (strings),
logical (TRUE/FALSE)

I Factor (really integer + level attribute) for categorical
variables

I Lists (generic vectors)

8 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Objects and arithmetic

Basic operations

I Standard arithmetic is vectorized: x + y adds each
element of x to the corresponding element of y

I Recycling: If operating on two vectors of different length,
the shorter one is replicated (with warning if it is not an
even multiple)

I c — concatenate: c(7, 9, 13)

I seq — sequences: seq(1, 9, 2), short form: 1:5 is
the same as seq(1,5,1)

I rep — replication rep(1:3, 3:1) (1 1 1 2 2 3)
I sum, mean, range, . . .

9 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Objects and arithmetic

Demo 1

x <- round(rnorm(10,mean=20,sd=5)) # simulate data
x
mean(x)
m <- mean(x)
x - m # notice recycling
sqrt(sum((x - m)^2)/9)
sd(x)

10 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Objects and arithmetic

Smart indexing

I a[5] single element
I a[c(5,6,7)] several elements
I a[-6] all except the 6th
I a[b>200] index by logical vector
I a["name"] by name

11 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Objects and arithmetic

Extended data types

I The basic vector types can be combined and extended to
form more complex data structures

I Attributes extend a basic type with further information.
E.g., a vector can have a names attribute, for more
readable printing

I Classes have two main functions:
I Hide details
I Allow function dispatch (functions that behave differently

depending on the class.

12 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Objects and arithmetic

Factors

I Factors are used to describe nominal variables (the term
originates from factorial designs)

I Internally, they are just integer codes plus a set of names
for the levels

I They have class "factor" making them (a) print nicely
and (b) behave consistently

I A factor can also be ordered (class "ordered"),
signifying that there is a natural sort order on the levels

I In model specifications, factors play a fundamental role by
indicating that a variable should be treated as a
classification rather than as a quantitative variable.

13 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Objects and arithmetic

Lists (generic vectors)

I A vector where the elements can have different types
I Functions often return (classed) lists
I Indexing:

I lst$A
I lst[[1]] first element
I lst[1] list containing the first element

14 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Objects and arithmetic

Demo 2

(indexing, factors, lists)

15 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Matrix calculus

Elementary matrix manipulations

I Matrices are implemented as vectors with a dim attribute
(of length 2)

I Constructor function: matrix(1:4,2,2)
I Indexing in the usual way M[i,j], with all the features of

“smart indexing”. M[,j] is j th column, etc.
I Special feature for matrices and arrays: Matrix indexing,
M[A] where A has as many columns as M has dimensions.

16 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Matrix calculus

Matrix algebra

I R contains a pretty full set of primitives for matrix calculus
I A %*% B for matrix multiplication
I solve(A, b) for solving linear equations. (solve(A) for

matrix inverse)
I t(A) for transpose of a matrix.

17 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Matrix calculus

Demo 3

Permutation matrix (Mx permutes the elements of x)

perm <- sample(5) # w/o replacement
n <- length(perm)
M <- matrix(0,n,n)
M[cbind(1:n,perm)] <- 1
M
perm
M %*% 1:n

18 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Matrix calculus

Other matrix techniques

I diag has multiple functions: creation of diagonal matrices,
extracting, and manipulating the diagonal of a matrix.
Beware: diag(v) is ambiguous if v can have length 1.

I row(X), col(X) are convenient for generating some
forms of matrices.

I upper.tri and lower.tri generate indexes for
accessing the upper/lower triangle of a matrix.

I Matrices can be “glued together” using cbind and rbind

19 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Matrix calculus

Row and column matrices

I R usually treats vectors as row or column matrices “as
appropriate” (i.e., it guesses)

I E.g., you can left- or right-multiply a vector by a matrix,
even though the latter formally requires transposition

I And even do y %*% x to get the inner product y ′x
I If you want to be explicit about it, you can use rbind or
cbind to create the appropriate single-row or
single-column matrix.

20 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Matrix calculus

Using drop() and drop=FALSE

I Default: If a dimension has length one, it is dropped from
results. M[1,] is a vector, not 1×n matrix.

I Often convenient, but source of obscure bugs
I Watch out for extreme cases
I Use M[1,drop=FALSE] to prevent this
I Conversely sometimes you get a matrix and want a vector,

as in drop(M %*% 1:n)

21 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Important functions

Some Basic Functions

I Constructors of simple objects
I Single-column modifications
I Modifying and subsetting data frames

22 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Important functions

Constructors

I R deals with many kinds of objects besides data sets
I Need to have ways of constructing them from the

command line
I We have (briefly) seen the c and list functions
I Notice the naming forms c(boys=1.2, girls=1.1)

I Extracting and setting names with names(x)

I For matrices and arrays, use the (surprise) matrix and
array functions. data.frame for data frames.

I It is also fairly common to construct a matrix from its
columns using cbind

23 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Important functions

Demo 4

x <- c(boys = 1.2, girls = 1.1)
x
names(x)
names(x) <- c("M", "F")
x
matrix(1:4,ncol=2)
cbind(x=0:3,"exp(x)"=exp(0:3))

24 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Important functions

The factor Function

I This is typically used when read.table gets it wrong
I E.g. group codes read as numeric
I Or read as factors, but with levels in the wrong order (e.g.
c("rare", "medium", "well-done") sorted
alphabetically.)

I Notice the slightly confusing use of levels and labels
arguments.

I levels are the value codes on input
I labels are the value codes on output (and become the

levels of the resulting factor)

25 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Important functions

Demo 5

aq <- airquality
aq$Month <- factor(aq$Month, levels=5:9,

labels=month.name[5:9])
aq$Month
levels(aq$Month) <- month.abb[5:9]
aq$Month

26 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Important functions

The cut Function

I The cut function converts a numerical variable into k
groups according to a set of break points

I The breaks must include all k +1 interval endpoints
I The intervals are left-open, right-closed by default

(right=FALSE changes that)
I The lowest endpoint is not included by default

(include.lowest=TRUE to change it.)

27 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Important functions

Demo 6

library(ISwR)
age <- juul$age
age <- age[age >= 10 & age <= 16]
range(age)
agegr <- cut(age, seq(10,16,2), right=FALSE, include.lowest=TRUE)
length(age)
table(agegr)
agegr2 <- cut(age, seq(10,16,2), right=FALSE)
table(agegr2)

28 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Working with data frames

Data frames

I Like data set in other packages
I Technically: Lists of vectors/factors of same length
I Indexed like matrices (Beware, though: Data frames are

not matrices) or lists
I Generate from read operation or with data.frame

I Many sample data frames are available in packages

29 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Working with data frames

Attaching data frames

I Normally variables in data frames must be qualified by the
name of the data frame

I I.e., you have to say airquality$Month, in case there is
another Month in another data frame

I However, if you attach(airquality), then you can
access its contents without the qualifier

30 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Working with data frames

Demo 7

airquality$Month
airquality[airquality$Month==5,]
oz <- airquality[airquality$Month==5,]$Ozone
mean(oz)
mean(oz, na.rm=TRUE)

attach(airquality)
mean(Ozone, na.rm=TRUE)
tapply(Ozone, Month, mean, na.rm=TRUE)
detach()

31 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Working with data frames

Reading data

I Simple data vectors can be read using scan()

I Data frames can be read from most reasonably structured
text file formats (space separated columns, tab- and
comma-delimited files) using read.table() or
read.delim2().

I A nice expedient is to read from the clipboard
(read.delim2("clipboard"))

I The foreign package can read files from Stata, SPSS,
. . .

I Finding the full pathname of a file is tricky. Either change
the working directory use file.choose() to browse to it.

32 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Working with data frames

The workspace

I The global environment contains R objects created on the
command line.

I There is an additional search path of loaded packages and
attached data frames.

I When you request an object by name, R looks first in the
global environment, and if it doesn’t find it there, it
continues along the search path.

I The search path is maintained by library(), attach(),
and detach()

I Notice that objects in the global environment may mask
objects in packages and attached data frames

33 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Working with data frames

Demo 8

search()
library(ISwR)
data(intake) # From ISwR
ls()
attach(intake)
search()
ls("intake") # show variables in attached data frame
post - pre
rm(intake) # remove data frame
detach() # remove from search path

34 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Working with data frames

A Common Mistake

attach(juul2)
sex <- factor(sex)
tapply(height, sex, mean, na.rm=TRUE)
detach()
attach(subset(juul2, age > 25))
sex <- factor(sex)
tapply(height, sex, mean, na.rm=TRUE)

You get an error saying that height and sex are of different
length. What went wrong?
Second time around, sex was found in the global environment
before the attached data frame.

35 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Working with data frames

Subsetting Data Frames

I The syntax for indexing data frames easily gets heavy:
airquality[airquality$Month == 5 &
airquality$Ozone > 50,]

I The subset function allows you to say
subset(airquality, Month == 5 & Ozone >
50). I.e., it evaluates the second argument within the data
frame.

36 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Working with data frames

Attaching or not
I Attached data frames can lead to confusion, especially if

you modify their variables
I On the other hand you do probably want the simplified

notation for convenience (and things like axis labels do
depend on it)

I I tend to recommend attaching only after making all
necessary transformation. Others are more radical and
discourage attach entirely

I In either case, it is useful to know some functions that
allow you to work with the simplified notation, without
actually attaching

I subset is one example, the others are transform,
with, and within

37 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Working with data frames

Demo 9

juulyoung <- subset(juul, age < 20)

with(juulyoung, plot(age, igf1))

juulnew <- transform(juul,
sex=factor(sex, labels=c("M","F")),
tanner=factor(tanner))

juulnew2 <- within(juul, {
sex <- factor(sex, labels=c("M","F"))
tanner <- factor(tanner)
rm(testvol)

})

Notice that within and transform are very similar, but
within allows a bit more flexibility.

38 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Programming

R programming

I R is a full programming language
I Flow control
I User-written functions

I You will soon be writing your own R functions
I For repeated ad-hoc tasks
I Or, because functions are required input for certain tasks

(e.g., optimizers)
I User-written functions are not substantially different from

system functions, making R very smoothly extensible.

39 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Programming

Argument matching

I A very simple function logit <- function(p)
log(p/(1-p))

I Usage: logit(0.5)
I The return value of a function is the result of the last

expression, unless there is an explicit return()
I Formal arguments (p)
I Actual arguments (0.5)
I Positional matching: plot(x,y)
I Keyword matching: t.test(x ~ g, mu=2,
alternative="less")

I Partial matching: t.test(x ~ g, mu=2, alt="l")

40 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Programming

Scoping

I Objects defined in a function will generally be local to that
function and usually become unavailable when the function
exits

I However, the full story is more complicated
I . . . so we skip most of it.
I One basic point is that a function can “see” objects in the

parent in which it was defined (lexical scoping).

41 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Programming

Flow control

I if/else

I switch()

I for loops
I repeat, while

42 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Programming

Conditional Expressions
if (paired)

xok <- yok <- complete.cases(x, y)
else {

yok <- !is.na(y)
xok <- !is.na(x)

}

twopi <- if(clockwise) -2*pi else 2*pi

I Notice that the condition is a scalar. It doesn’t vectorize;
only one branch is taken. (Compare the ifelse()
function)

I Conditions can be combined using && and operators
I An if expression does have a result, which can be used

as in the 2nd example above
43 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Programming

The for loop
for (i in 1:n)
for (i in names)
for (ns in list(...)) ...
for(pkg in getOption("defaultPackages")) {....

I Notice that the loop is over a vector or a list
I Inside the body of a for loop, the loop variable takes on the

value of each element in turn
I Even when it is a numeric sequence, the entire vector is

stored in memory. Fortunately, this is rarely a problem in
practice

I You can skip to the next element with next or exit the loop
completely with break,

44 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Programming

Not Using for Loops

I Many applications of for loops have the following structure
I Allocate a list/vector to hold the results
I Loop, saving the results of each iteration in turn

I (A common buglet is that people extend the vector on
every iteration, which can become terribly inefficient)

I This structure can be abstracted into a single function call
lapply(lst, fun)

which causes fun to be applied to each element of lst,
and returns a list of the results. (Further arguments can be
added and will be passed on to fun)

45 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Programming

Further Apply-functions

I lapply – list-apply
I sapply – simplifying apply
I tapply – tabulating apply
I apply, sweep – along slices of tables
I replicate – repeat expression

46 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Simple Descriptives

I mean, median, sd, etc.
I quantile(x,p) where p is a vector of proportions
I (actually, there is nine different types of quantiles)
I summary gives some key quantities or a variable,

depending on its type. This also works on entire data
frames

48 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Tabulation

I For simple tables of discrete variables, use the table
function, as in table(sex,tanner), or xtabs

I For tables of descriptives the first choice is tapply, for
example tapply(age, tanner, mean, na.rm=TRUE

I Explanation: age is split according to groups and mean is
called on each piece with an extra argument, evaluating
mean(age, na.rm=TRUE) within each group.

49 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Neater Tables

I Some variations over tapply is given by the by and
aggregate functions

I Multiway tables are often hard to read and use for
presentation purposes. Look into the ftable (“flattened”
tables) and Martyn Plummer’s stat.table function in the
Epi package.

50 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Some standard procedures

I Continuous data by group: t.test, wilcox.test,
oneway.test, kruskal.test

I Categorical data: prop.test, chisq.test,
fisher.test

I Correlations: cor.test, with options for nonparametrics

51 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Demo 10

library(ISwR)
attach(intake)

t.test(pre, post, paired=TRUE)

detach()

52 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Demo 11

caesar.shoe

chisq.test(caesar.shoe)
fisher.test(caesar.shoe)

x <- caesar.shoe[1,]
n <- margin.table(caesar.shoe,2)
rbind(x,n)
prop.trend.test(x,n)

53 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Modeling Tools: Overview

I Model formulas
I Model objects and summaries
I Comparing models
I Evaluating model fit (plot methods)
I Generalized linear models

55 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Model formulas

I Linear model, y = Xβ + ε
I In practice something like

y = β0 +β1×height+β2×1(type=2) +β3×1(type=3) + ε

I Wilkinson-Rogers formulas:

y = height+ type

(Interpretation depends on whether variables are
categorical or continuous)

56 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Model formulas in R

I R representation y ~ height + type where type is a
factor

I Interactions a:b, a*b = a + b + a:b

I Algebra (a:(b + c) = a:b + a:c etc.)
I Notice special interpretation of operators

57 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Fitting linear models

data(airquality)
aq <- transform(airquality, Month=factor(Month))
fit.aq <- lm(log(Ozone) ~ Solar.R + Wind +

Temp + Month, data=aq)

I lm generates a fitted model object
I Extract information from model object
I Fit other models based on model object

58 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Inspecting model objects

I Extract information about the fit
I summary(fit.aq)

I fitted(fit.aq), resid(fit.aq)
I anova(model1, model2)

I plot(fit.aq) – diagnostics
I predict(fit.aq, newdata)

59 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Model search

I anova(model) “Type I” sum of squares
I drop1 (“Type III”)
I step (AIC/BIC) criteria
I update

60 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Demo 12

aq <- transform(airquality, Month=factor(Month))
fit.aq <- lm(log(Ozone) ~ Solar.R + Wind +

Temp + Month, data=aq)
fit.aq2 <- update(fit.aq, ~ . - Month)
summary(fit.aq)
plot(fit.aq)
drop1(fit.aq, test="F")
anova(fit.aq, fit.aq2)

61 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

R graphics

I The standard interface (i.e., not the lattice package)
I Customizing plots
I Graphics parameters
I Math on plots

63 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Standard R graphics

I Ink on paper model; once something is drawn it cannot be
erased.

I Sensible default plots
I Arguments can override defaults
I Options to turn off various elements of plots (e.g. the axes)
I Functions to add elements.

64 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Basic x-y plots

I The plot function with one or two numeric arguments
I Scatterplot or line plot (or both) depending on type

argument: "l" for l ines, "p" for points (the default), "b"
for both, plus quite a few more.

I Functions for adding to a plot: lines, points,
segments, abline, text, mtext, axis

I Also: formula interface, plot(y~x)

65 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Specific plots

I Histograms — hist(x)

I Density plots — plot(density(x))

I Boxplots — boxplot(x)

I Barplots — barplot(x) (x can be a matrix)
I Pies — pie()

I Matrix plots (multiple y columns) — matplot()

66 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Graphical parameters

I Arguments to plot et al. (67 possibilities!)
I The par function can be used to set most of them

persistently. Most info is found via help(par)
I Look them up! Here are some of the more commonly

used:
I Point and line characteristics: pch, col, lty, lwd
I Multiframe layout: mfrow, mfcol
I Axes: xlim, ylim, xaxt, yaxt, log

67 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Demo 13

par(mfrow=c(2,2))
matplot(intake)
matplot(t(intake))
matplot(t(intake),type="b")
matplot(t(intake),type="b",pch=1:11,col="black",

lty="solid", xaxt="n")
axis(1,at=1:2,labels=names(intake))

68 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Math on plots

I Sort of like TeX
I Works on unevaluated expressions (quote(alpha),

expression(alpha))
I Special conventions: ˆ,[] sub/superscript, special names
alpha, sum, int

I See help(plotmath)

69 / 70

About this Tutorial Basics of R Statistics with R Modelling Graphics

Demo 14

y <- rnorm(25)
curve(dnorm(x, mean(y), sd(y)), from=-3, to=3)
rug(y)
abline(h=0)
title(main=substitute(paste(mu==m, " ", sigma==s),

list(m=mean(y), s=sd(y))))

70 / 70

