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SUMMARY

For panel (single source) binary data, logistic regression models can produce very
misleading results if the variation between respondents is ignored. Various solu-
tions to this problem are discussed. It is argued that the best way of doing it is
by a conditional logistic regression model, where the conditioning taking place is on
the total number of positive responses for each respondent. However, this model
estimates only the within—respondent effects. The between—respondent effects can
be estimated by an over—dispersion model with the respondent totals as (overdis-
persed binomial) responses and within—respondent averages of the original covariates
as explanatory variables. The performance of different approaches are analysed by

simulation studies.

1. Introduction.

Birch (2002) has argued that logistic regression in longitudinal data,
also called panel data, or single source data in the marketing context,
can produce serious inference errors when heterogeneity between respon-
dents is ignored. What can happen is that an explanatory variable with
essentially no effect on the binary responses appears to be strongly sig-
nificant. Roughly because the reuse of the same respondents again and
again results in a phenomenon which — in the most extreme case where
the behaviour of the respondents is constant over time — is similar to
what happens when all the counts in a 2 X 2 contingency table are mul-
tiplied by some large factor. What happens in this extreme situation is
that the x? test statistic (Pearson or —2 log(likelihood ratio)) for inde-
pendence is multiplied by the same factor, and this will obviously make
it “significant” far too often, even when there is independence in the
original table.

This problem is wellknown, and from a strictly theoretical point of view
there is really not much to say about it, apart from the triviality that an
incorrect model can not be expected to produce correct results. From
a more practical point of view, there is a little more to say. Logistic
regression is a standard tool in this context, and since the conclusions
coming out of it quite often appear reasonable and in agreement with
common sense (see e.g. Hansen and Hansen 2001), it is of some interest to
study how serious the problem is. With the partial purpose to illustrate
the difference between logistic regression and some of the alternatives
(see section 2 of this paper), Birch (2002) analysed a number of such



data sets. However, no unique conclusion came out of this. The purpose
of the present paper is to show how simulations can be used to make
a quantitative analysis in a concrete case, and to draw some general
conclusions from this.

For the kind of marketing data we study, where the response is the
indicator for the event that a certain brand of a consumers good is
preferred in a purchase, and the explanatory variable is a measure for
the consumers exposure to advertisements for that brand, it has been
suggested that the problem with heterogeneity can, at least to some
extent, be eliminated by the inclusion of “loyalty” as an explanatory
variable in the model. A loyalty, in this context, means a measure for
the respondents tendency to prefer this specific brand in the near past,
for example the relative frequency over the last 5 or 10 purchases. We
return to this question in section 4.

It should be emphasized that our use of the phrase “conditional logistic
regression” has nothing to do with what Nordmoe and Jain (2000) call
the “conditional logit model”. Our approach is different because we
are only considering a single brand (among others) at a time. Our
analogue to Nordmoe and Jain’s conditional logit model is the (ordinary,
i.e. unconditional) logistic regression model, and our solution to the
over—dispersion problem (or within—consumer—correlation problem) is
quite different from their’s.

2. The data and some statistical results.

The data set studied here constitutes a very small corner of a tiny lit-
tle bit of the British AdLab data base, created by Central Independent
Television 1985-90 (see Moseley and Parfitt 1987), kindly made available
to us for research purposes by Flemming Hansen, Forum for Advertis-
ing Research. The data set, which has been extracted from the data
base by Lotte Yssing Hansen and further prepared by Kristina Birch,
consists of all purchases of chocolate bars over observation periods of
varying lengths, made by 560 households, adding up to a total of 11246
such purchases, i.e. around 20 purchases per household on average. The
binary response is defined as 1 if the chocolate bar happens to be a
Mars Bar, 0 otherwise. The only explanatory variable considered here is
constructed as a weighted average of the counts of television and radio
advertisements for Mars Bar that the household was exposed to on day
1, 2, ..., 28 before the purchase. The weights used in this averaging are
proportional to 0.95¢, where d is the number of days passed since the
advertisement was seen. A lot of details concerning data stucture, other
background variables, the choice of 0.95 as the “retention rate” etc. are
ignored here, because they are irrelevant to the general ideas discussed.

Logistic regression. The result of an ordinary logistic regression analysis
of this data set of length 11246 with “Mars/not Mars” as the binary
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response and a logit—linear structure consisting only of a constant term
and a linear effect of the above mentioned variable EXPO (ignoring
differences between consumers) results in the following conclusions. The
estimated probability that a given purchase of chocolate bar results in
the choice of a Mars Bar is

exp(—0.8548 + 0.02007 X EXPO)
1 + exp(—0.8548 + 0.02007 x EXPO)

The coefficient 0.02007 to EXPO is significantly positive. The Wald test
(i.e. the test produced by any statistical package, where the estimate
divided by its approximate standard deviation is evaluated in a stan-
dardised normal distribution) reports a two—sided P—value of 0.000005.

Conditional logistic regression. The obvious problem with the analysis
presented above is that it does not take into account the fact that con-
sumers have different tastes concerning chocolate bars. One can easily
imagine that some buy Mars Bars most of the time, some buy other
brands most of time, rather independently of the commercials that hap-
pened to be running on their TV set. A simple way of accounting for
this is by the introduction of 560 consumer parameters «. describing
these differences. Thus, we assume that the probability of success in the
tth purchase for consumer c takes the form

Py =1) = exp(ae + B X EXPO;)
Y = =17 exp(a, + B X EXPOy;)

The simplest and best way of estimating this model — since we are not
particularly interested in the 560 consumer parameters — is by condi-
tional logistic regression. By conditioning on the numbers of successes
for each consumer, we obtain an expression for the conditional likelihood,
where the consumer parameters o, cancel out. This analysis results in
the following conclusions. The estimated probability that a given pur-
chase of chocolate bar results in the choice of a Mars Bar becomes

Py =1) = exp(a, + 0.00802 X EXPO,;)
e = T T exp(ae + 0.00802 X EXPOG)

However, the coefficient 0.00802 is not significantly positive; the Wald
test reports a two—sided P—value of 0.31, thus strongly contradicting the
results of the simple logistic regression.

An overdispersion model for the consumer totals. There are two ways in
which the exposure to Mars commercials could influence the consumers
tendency to buy Mars Bars, namely

(1) Within consumers. If a consumer is heavily exposed to Mars adver-
tisements, he/she tends to buy more Mars Bars than usual in a period
thereafter.



(2) Between consumers. Those consumers that watch many Mars com-
mercials buy, on average, more Mars Bars than those who watch few
Mars commercials.

These two types of exposure effect correspond closely to “within blocks”
and “between blocks” effects in classical analysis of variance. There is
no reason, a priori, to expect these two effects to be equal. Nevertheless,
a strong argument in favour of the simple logistic regression against the
conditional logistic regression is that the conditional model measures
only the effect of type (1) above. Any effect of type (2) is confounded
with the 560 consumer parameters, and therefore not taken into account
by the conditional analysis.

It can be argued that a correct model should involve a random effect of
consumers, and perhaps even a seperate EXPO-—coefficient for each of
the two types of exposure effect. However, a simple way of estimating
the “type (2)” effect by an additional analysis, which is very similar
to classical standard methods for “recovery of interblock information”,
goes as follows. Consider, as our new reponses, the 560 sums within
consumers of the original binary responses (i.e. the sums we conditioned
on before),

Ye. = the number of Mars purchases for consumer c.

A naive model might assume that these counts are binomial with totals
(indices)

n. = the total number of purchases for consumer c

and a probability parameter that depends logit-linearly of the con-
sumers’ average exposures to Mars commercials. It can be expected,
however, that this model will show some over—dispersion due to the dif-
ferences between consumers mentioned earlier. A simple model that
takes this into account is the overdispersion model corresponding to this
binomial model, where the expected responses are assumed to be of the
same form as in the binomial model, but the binomial variances are
modified by a common scale factor (the overdispersion parameter). See
McCullagh and Nelder (1989), Tjur (1998). The conclusion of this model
is as follows. The estimated expectations of the responses y.. are

exp(—0.965 4 0.0437 x EXPO,.)
“1 + exp(—0.965 + 0.0437 X EXPO,)

Eye. =n

where EXPO, denotes a suitably defined average over time of consumer
¢’s exposure to Mars advertisements. The test for “no effect of EXPO”
shows only weak significance (P = 0.034 two-sided). This test is a
T—test, correcting for overdispersion and the estimation error for the
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overdispersion parameter. There is a strong overdispersion, correspond-
ing to a standard deviation which is almost three times that of the
binomial model. A plot of normed residuals against the totals n. sug-
gests that a model with variance proportional to ng/ % or n? rather than
n. would be more realistic. This was tried, and it actually resulted in a
more stable behaviour of the normed residuals, but the effect of exposure
became completely insignificant (P > 0.5).

It can be argued — and we certainly do insist — that the combination
of

(1) a conditional logistic regression of the responses y.;, given the con-
sumer sums y,.. (for the analysis of type (1) effect), and

(2) an analysis of the consumer sums y.. by a standard binomial overdis-
persion model, perhaps with a modified variance function (for the anal-
ysis of type (2) effect)

together constitute an exhaustive analysis of the data set. Thus, our
conclusion is that there is no exposure effect at all in this data set, apart
from a vague type (2) tendency based on a P-value of 3.4%.

It has, nevertheless, been argued that the simple logistic regression
model may have some element of thruth in that goes beyond what can
be found in this way. And it has, in particular, been argued that the
inclusion of a “loyalty” variable in this model may be able to account
for the heterogeneity in a sufficient manner. This is the topic of sec-
tion 4. Here, we proceed with a simulation study of the logistic models’
tendency to create false significances.

3. Some simulations.

More precisely, we construct 10000 data sets of the same kind as the one
considered above in the following way. The total design, including the
number of consumers, the lengths of observation periods for consumers
and the values of the explanatory variable EXPO are kept fixed and
equal to the values we have in the original setup. But the responses y.;
are constructed in each of the 10000 cases as follows. First, 560 consumer
parameters «. are drawn from a normal distribution with mean —0.97
and standard deviation 2.0. Then, responses y.; are generated according
to a logistic model with these consumer parameters and no exposure
effect (8 = 0). Each of these data sets are analysed both by a logistic
regression model and a conditional logistic regression model, and the
“left sided P—values”

b

A

var()

are computed. Since the data sets, by the way they are constructed,
are guarantied to be without an exposure effect, we would expect these

R=29®
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quantites R to follow a uniform distribution on the unit interval —
provided that the test performed is a valid one.

The fixed parameter values —0.97 for the mean and 2.0 for the standard
deviation in the distribution of the generated consumer parameters were
chosen to make the constructed data sets appear as similar as possible
to the original data set, in the following sense. The constant —0.97 is
simply the estimate of the constant term in the overdispersion model.
The value 2.0 for the standard deviation was chosen by trial and error as
a value that produced approximately the same degree of overdispersion
on average as observed for the original data. In this sense, our simulated
data sets are as similar as possible to the original data set, as far as
the different sources of variation and the average of the responses are
concerned.

The histogram (with division of the unit interval into 100 subintervals
of length 0.01) and cumulated cdf. for the R-values that came out of
the 10000 conditional models are shown in figure 1, the similar pictures
for the ordinary logistic regression models are shown in figure 2.
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Figure 1. Test for “no effect of exposure” in data without such an effect. Distribution

of 10000 P—values in the conditional logistic regression model.
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Figure 2. Test for “no effect of exposure” in data without such an effect. Distribution

of 10000 P—values in the logistic regression model.

The conclusion from these two figures is obvious. The R-values from the
conditional models behave exactly as they should according to standard
asymptotic theory. The values from the unconditional model come close

6



to the endpoints far too often. More than half of the values are in the
two extreme intervals corresponding to “one-sided significance on level
0.01”. What you can not see from this figure is that 1990 of the 10000
values — almost 20 % — are greater than 0.9999975 or smaller than
0.0000025, which means that they appear as more significant than the
value observed in the original data set. Thus, the P-value 0.000005 from
the logistic regression of the original dataset is totally misleading.

4. The inclusion of a “loyalty” variable.

An idea that may appear promising at first sight is to include an explana-
tory variable in the logistic regression model which somehow accounts for
the fact that consumers have different attitudes to the brand in question.
Of course, we can not just use the consumers’ average consumptions of
Mars (or a transformed version of this) as an explanatory variable, be-
cause this would imply, more or less, that we consider the responses as
explanatory for themselves. But we can use an idea which is wellknown
from the analysis of autoregressive models in time series analysis. It is
wellknown that such models can (with little loss of information, if any at
all) be handled as ordinary regression models, where “lagged” versions
of the response variable occur as explanatory variables. An argument
for this is that the likelihood function in the regression model can be
interpreted as a conditional likelihood in the autoregressive model, by
conditioning on the first few observations. By exactly the same argu-
ment, we can handle an ordinary logistic regression model which has,

say,

LOYAL,; = Ye,i—5 + Yec,i—a + yc,Ei)—?) + Ye,i—2 + Ye,i—1

(i.e. the releative frequency of Mars purchases among the last five choco-
late bar purchases) as an explanatory variable, provided that the first
five observations for each consumer (for which the new covariate is un-
defined) are removed from the data set. In this model, the expression

Py = 1) = exp(a + B X EXPOy; 4+ ¥ X LOYAL¢;)
Yei =2 = T Fexp(a + f X EXPOw + 7 X LOYALy;)

should be interpreted as a conditional probability, given the consumers
behaviour in the past. But the likelihood has the same form as the like-
lihood for a logistic regression, by the multiplication rule for conditional
probabilites.

The estimate of £ in this model (for the original data set) is 0.01067,
with an estimated standard deviation of 0.006283. However, the Wald
statistic 1.699=0.01067/0.006283 is insignificant (twosided P = 0.09).
This means that the inclusion of the new covariate LOYAL has actually
removed the false significance that was present in the analysis without
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this covariate. The estimate of « is significantly positive (4.3484, with
a standard deviation of 0.09018), which confirms the idea that the term
¥ X LOYAL.; does (at least partially) take over the role of the individual
parameters ..

In a conditional logistic regression analysis of the same data and with the
same explanatory variables it could, perhaps, be expected that the effect
of LOYAL would be insignificant, because individual parameters have
already been accounted for by the conditioning. However, in this model
the coefficient v to LOYAL was estimated to be 1.358 with a standard
deviation of 0.1336, thus significantly greater than zero (P=0.000000).
The immediate interpretation of this is that the (given number of) Mars
purchases for each consumer tend to cluster more than they would if they
were spread out at random. But as we will see below, some reservations
must be made here, since the corresponding estimates in simulated data
sets (that are guaranteed to be without such a clustering) are, quite
generally, negative.
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Figure 3. Test for “no effect of exposure” in data without such an effect. Distribution
of 10000 P—values in the conditional logistic regression model, including an effect of

loyalty.

1.00

0.80

0.60

0.40

0.20

00 01 02 03 04 05 06 07 08 09 10
Figure 4. Test for “no effect of exposure” in data without such an effect. Distribution

of 10000 P—values in the logistic regression model, including an effect of loyalty.

A simulation study shows a more accurate picture. 10000 data sets were
created in exactly the same way as in section 3. The histograms and
cdf.s for the resulting “R-values” are shown in figure 3 for the conditional

8



logistic regression and in figure 4 for the ordinary logistic regression, with
inclusion of the covariate LOYAL as an explanatory variable.

Figure 3 shows that the R—values from the conditional model are almost
uniformely distributed. Figure 4 shows that this is not the case for the
ordinary logistic regression. However, the model’s tendency to produce
false significances is much smaller than for the model without LOYAL.
We have, for example, approximately 600 (out of the 10000) values which
are formally significant on two-sided level 0.01, where the corresponding
number for the model without LOYAL was more than 5000. Without
further documentation, we mention that if LOYAL is defined as the
average of the 10 (instead of 5) previous responses, the distribution of
the R—values becomes almost uniform.

It is of some interest how the estimates of v (the coefficient to LOYAL)
behave for these models. What we would expect is, of course, a strongly
positive effect of LOYAL for the logistic regression, because the whole
idea is that the term v X LOYAL,; is a substitute for the consumer param-
eter o, which should obviously have large values for consumers with a
high inclination towards Mars Bars. The distribution of the 10000 esti-
mated values of 7 is shown as the first histogram of figure 5. All values
are greater than 3.
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Figure 5. Distributions of the estimates of the coefficient to LOYAL in the 10000

simulations for the logistic (left) and the conditional logistic (right) models.

The second histogram of figure 5 shows the same distribution for the
conditional model. Here, all values are negative. This may appear a
bit surprising, at first sight, but if one thinks a little about it it is no
surprise at all. A large value of LOYAL indicates that the consumer has
bought many Mars Bars until now, and since the total number of Mars
purchases is fixed (conditioned on) in this model, the number of Mars
purchases that remain to be done must be small. It is questionable
whether this model makes sense at all. At least, it is quite difficult
to understand what is going on when the idea of “conditioning on the
past” is applied to a model where the consumer totals y.. are fixed. The
(significantly) positive estimate for the same parameter + in the original
data set indicates that the clustering here is even more pronounced than
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the actual value (whatever that means) of the estimate indicates.

5. Estimation bias.

We may, with some reservations, conclude from the simulation studies of
section 4 that the inclusion of a loyalty covariate in the logistic regression
model can remove the models tendency to exaggerate the significance of
the exposure effect. If the corresponding P-value is extremely small,
it is probably safe to conclude that there is an exposure effect, even
though the exact P—value should not be taken too seriously. However,
correctness of the Wald test is not all we can or should require from the
method, correctness of the estimate of the exposure effect (in case it is
there) is equally important. To investigate this, we performed another
simulation study, involving 10000 data sets constructed as follows. As in
section 3 and 4, all design quantities were taken from the original data
set, including the values of EXPO, and random consumer parameters
were constructed in the same way. But the responses were constructed
according to a logistic regression model with the value § = 0.1 of the
coefficient to EXPO, which is about ten times the estimate obtained
from the conditional logistic regression in the original data set. In each
case, both an ordinary and a conditional logistic regression model with
EXPO and LOYAL as explanatory variables was fitted. Figure 6 shows
what came out of this. The left histogram shows the distribution of the
[—estimates for the simple logistic regression. For some reason these
estimates are centered around 0.05, and almost all of them are less than
0.075. Thus, the estimate is seriously biased. For the conditional model
(the right histogram), the estimates are centered around the true value
0.1.
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Figure 6. Distributions of the estimates of the coefficient to EXPO in 10000 simu-
lations for the logistic (left) and the conditional logistic (right) models. True value
[=0.1, LOYAL included.

A final natural question is whether this bias has to do with the inclusion
of the loyalty variable, or it is just an intrinsic property of the logistic
regression model when applied to such data sets. To investigate this we
did exactly the same simulations once more, but the estimates computed
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were for the models (unconditional and conditional logistic regression)
without LOYAL as explanatory variable. To ensure compatibility with
the results shown in figure 6, we still excluded the first five observations
for each consumer. Here, we would certainly expect the conditional
model to work at least as well as it does when LOYAL is included as an
explanatory variable. For the unconditional model, all we know is that
this model is rather useless when the task is to test 8 = 0, but when the
problem is to give a point estimate of 8 we can not be sure what will
happen. However, figure 7 shows that it does not make much difference
whether LOYAL is included in the model or not. The bias is slightly less
pronounced than for the model including LOYAL, but still very strong,
with a mean of estimated values only slightly above 0.6. The dispersion
has increased, obviously because much of the between—consumer vari-
ation that was accounted for by the loyalty effect is now present as a
component of the estimation error. The same phenomenon for g = 0 is
an ingredient in the phenomenon studied in section 3 (significance too
often when testing 5 = 0). For the conditional model, the distribution
of the estimates has hardly changed at all.

1000-

S0 oom a0 oo om0 o | oi
the coefficient to EXPO in 10000 simu-
lations for the logistic (left) and the conditional logistic (right) models. True value
[=0.1, LOYAL not included.

6. Conclusions.

Our general conclusion is a warning against the use of ordinary logis-
tic regression for this kind of data. It may be possible to remove this
model’s tendency to produce false significances by inclusion of a “loy-
alty” covariate in the model, but it is not clear at all how and when
this works. Moreover, whether this covariate is included or not, the esti-
mates of the parameters of interest are likely to be seriously biased. We
recommend a combination of a conditional logistic regression model for
the analysis of within—consumer effects and a logit—linear model with
the consumer totals y. as “overdispersed binomial responses” for the
analysis of between—consumer effects.

7. A commercial. All computations related to this study were per-
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formed by the statistical package ISUW, see www.mes.cbs.dk/ sttt/.
ISUW has a command FITCLOGIT for estimation in conditional logistic
regression models, and a command FITNONLINEAR which can perform
the estimation in generalized linear models with overdispersion.
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