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SUMMARY

For binary panel data, the introduction of a random respondent effect in a logistic
regression model is a useful way of taking respondent heterogeneity into account.
More generally, logistic regression models with random coefficients can be used if not
only the intercept, but also the coefficients to explanatory variables can be expected
to vary from respondent to respondent. However, there are some identifiability prob-
lems with these models in the special case where respondents are observed only once.
A clarification of these matters can be obtained by studying the probit—linear model
rather than the logit—linear model. In practice this change of link function makes
very little difference. But the advantage of the probit models is that the identifi-
ability problems — which in the logit models with normal random effects merely
result in numerically unstable solutions to the likelihood equations — correspond to

mathematically exact overparametrizations in the probit—linear models.

1. Introduction.

Suppose that a coin is flipped 100 times. Consider the following two
models for the outcome of this experiment.

(1) The standard model. The results are outcomes of 100 independent
Bernoulli trials with the same parameter p.

(2) An “overdispersion model”. The results are outcomes of 100 Bernoulli
trials with different parameters pq, po, ..., Pp10o, which in turn have been
generated as i.i.d. observations from a distribution on the unit interval.

It is rather obvious that whatever we do to decide which of the two
alternative models we prefer, the data will be of no help whatsoever.
There is no way of detecting whether a Bernoulli variable originates
from a random or a fixed p. It is a Bernoulli variable anyway.

In more exclusive terms, this means that overdispersion in a model for
homogeneous (i.e. with the same p) binomial variables can not be de-
tected when all the binomial totals are 1. This triviality is essentially
what the present paper is about. But as we shall see, things become less
transparent when models with covariate effects are considered.

The following is a quite general discussion of what happens in a special
case when random effects or random coefficients are introduced in logit—
linear or probit—linear models for binary data. But just to make things



concrete, we refer to the following marketing context. For each of C
customers labeled ¢ = 1,2, ..., C, a number n. of purchases of a certain
consumers good are recorded. Our responses are

{ 1 if “our brand” was preferred,
Yei =

0 if some other brand was preferred,

where ¢ = 1,2,...,n. labels the purchases for each customer. In addi-
tion, we have a number K of explanatory variables

Thei, c=1,2,...,C, 1=1,2,...,n., k=1,2,...,K.

Such variables could be the price (or log price, or log price relative to
competitors average price) at the time of the purchase, the distance (or
inverse distance) to the dealer, dummies for the type of dealer (super
market, smaller shop etc.), the customer’s exposure to advertisments for
our brand at the time of the purchase, demographic variables associated
with the customer etc. etc. Some of these variables can have the form
zke (beeing associated only with the customer) whereas others may take
the form x.; (beeing associated with the single purchase).

In the following, we consider the case where only one explanatory vari-
able x.; is present. This is just to simplify the notation. The generaliza-
tion to more than one explanatory variable makes the notation heavier,
but conceptually it does not change much.

2. The logit— and probit—linear models.

A standard logistic regression model for this situation would state that
P (Yei =1) = A(ac + frci)

where a., c =1,2,...,C are parameters associated with the customers,
[ is the parameter determining the effect of the covariate z, and

is the standard choice of the inverse link function (cfr. McCullagh and
Nelder (1989)), the function that transforms the real axis (the natural
domain for linear expressions like a. + Sz;) to the unit interval (the
natural domain for probabilities).

The function A can be thought of as a c.d.f. for a continuous distribu-
tion, namely the socalled logistic distribution. Accordingly, a logistic
regression model has an interpretation in terms of an underlying lin-
ear regression model for “latent observations” which goes as follows.
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Let L.; be independent normalized logistic variables associated with the
purchases. Then we have

P(Yy=1) =P (Lei < ac + Brgi)

or

where Y = o+ 2. — L.; are the underlying latent observations. If we
could observe the Y, the relevant model would be an ordinary linear
regression model (apart from the somewhat unusual choice of a logis-
tic error distribution rather than a normal, and the fact that the scale
parameter for the error term is known and equal to 1). However, what
we observe is only the indicators Y,; for the events Y > 0. This in-
terpretation of the logistic regression model as a linear regression model
combined with an incomplete observation scheme plays a crucial role in

the following.

The probit-linear model differs from the logit-linear model only in the
choice of link function. In our case, the probit model states that

P (Yo =1) = ® (o + fei)

where )
z

wo= [ o2

is the c.d.f. of the normalized normal distribution. Accordingly, the
probit-linear model has an interpretation in terms of an “underlying
linear regression model for latent variables” Y = a. + fz. — Ue; with
error terms U,; that are normalized normal. Again, we do not observe
the latent variables, only the indicators Y;; of the events Y > 0.

In practice it is difficult to distinguish the two models from each other,
because the underlying distributions are so very similar. The figure be-
low shows their densities and c.d.f.’s, after suitable normalization of the
logistic distribution to ensure comparability. The logistic distribution

has variance m, and is therefore rescaled by a scale parameter of ﬁ
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Notice that parameter estimates from logit and probit models are not
directly comparable without a similar “\/m—correction”.
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The logit density (after normalization) is the one with the highest peak,
and accordingly the logit c.d.f. is the steeper of the two at the point
(0,0.5).

Nowadays, the probit model is rarely used because the algebraic struc-
ture of the logit model is much simpler, beeing an exponential family
with nice relations to log-linear models for count data and so on. Earlier,
probit models were more commonly preferred in cases where the latent
variables were believed to have a concrete interpretation, and where the
standard choice of a normal distribution for these variables was consid-
ered the most natural. However, the choice between the two types is
mainly a matter of taste, only for very large data sets is it possible to
make a statistical distinction between them.

3. Models with random effects.

The problem with the simple logit— and probit—models in our marketing
setup is that they can not measure the effect of covariates that are asso-
ciated with customers. If the covariate x.; takes the simpler form x., the
model becomes overparametrized because any change of the coefficient 3
can be compensated by a change of the customer parameters «, in such
a way that the model fits the (in this case binomial) customer totals
yc. exactly. Moreover, the effects of purchase dependent covariates x;
are only measured by the influence they have on change of a customer’s
behaviour, not by the influence they may have due to different (average)
levels for different customers.

It is tempting to solve this problem by use of a model where the indi-
vidual customer parameters a. are replaced with a common intercept «,
but this can produce very misleading results if the customers are actually
different (see Birch and Tjur (forthcoming), Tjur 2002). A conceptually
simple (though computationally rather complicated) solution is to think
of the customer parameters as drawn from a normal population, that is
to let
. = o+ wV,

where the V., ¢ =1,2,...,C, are i.i.d. normalized normal. Or, equiva-
lently, the parameters o, are assumed to be drawn from a normal dis-

tribution with mean « and variance w?.

In the case where each customer is observed only once (n. = 1), the pro-
bit model becomes particularly simple. With an obvious simplification
of notation (omitting index ¢, which now runs from 1 to 1) we get by
the latent variables interpretation

PY.=1)=P(a.+ pxr.—U.>0)=P(a+wV.+ Bz, — U, > 0)
=P (U, — wV, < a+ fz.)

4



which (since we must, of course, assume that the original error terms U,
of the latent model are independent of the random customer parameters
a + wV,) by the convolution property of the normal distribution equals

a+ P,

P(Zc w2+1§a+ﬁazc):q><
w?2+1

) =0+ g

U.—wV,
. wc2+1 . .
The conclusion is that the model with random customer parameters is

equivalent to an ordinary probit-linear model with a common intercept
o' and a coefficient 8’ to x given by

is a new set of i.i.d. normalized normal variables.

where Z, =

oY and gD
w?+1 w2 +1

It follows that the parameters o and (8 are non-identifiable, only their
“randommness—adjusted” versions o’ and 8’ can be estimated. Intuitively,
the reason for this is that the only effect of the randomness of the cus-
tomer parameters is to blur the differences between customers. Without
replicates within customers, we cannot distinguish between a weak in-
fluence of the covariate and a high variation between customers. It is
possible to test the hypothesis S = 0, since it is equivalent to 3’ = 0 in
the derived model; and since |3'| < |B], it is also possible in some cases
to give a positive lower confidence bound or a negative upper confidence
bound for 5. But estimation of o and /3 in the usual sense is impossible.

For the logistic regression model with all n. = 1, things are more com-
plicated. From a purely mathematical point of view, we can not say
much. Doing the same trick as above with the logit model will result in
a model where the variables Z,. are linear combinations of a normal and
a logistic variable, and since the two scale parameters can in principle
be identified from the shape of the convolved c.d.f., it would be mathe-
matically correct to say that the three parameters o, 8 and w? can be
identified in this model. But the close similarity of the two distributions
makes such an identification impossible in practice for moderate data
sizes. Even if millions of observations were present and supported the
choice of a logistic response curve in favour of a probit curve, it would
be somewhat irresponsable to attach any weight to point estimates of «
and [ that are so sensitive to microscopic changes of the link function
and the underlying distribution of the random customer parameters.

4. Models with random coefficients.

An extension of the random effects model, which can be used if also the
slope (8 is believed to vary from customer to customer, goes as follows.
Assume that customer intercepts a. and customer specific slopes (. are
drawn from a two—dimensional normal distribution with mean («, 3),
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var(a.) = w?, var(f.) = 62 and cov(a., B.) = pwd. For given values of
a. and f., we assume that

P(Yei=1)=A(a.+ Beei)

In the probit—version of this model with all n, = 1 we get, by the latent
variable interpretation (since the variance of the random contribution
U, — (e — @) — (Be — B)x. now becomes w? + 6222 + 2wdpr, + 1)
P(Yc: 1) :P(Uc < ac+ﬁcxc)
:P(Uc_ (OAC—OA) - (ﬁc_ﬁ)xc S OA+B.TC)

_ 3 o+ Bz,
VW + 0222 + 2wipr. + 1)

Also for this model we can show that o and 3 are non-identifiable. For
some constant k£ > 1, rewrite the argument to ® above as follows.

o+ Bz, B ka+ kfx.
Vw2 + 0222 + 2wlpz. + 1 /k2(w? + 1) + k20222 + 2k2wipz..

B o + Bz,
Vw2 + 07222 + 2w p'x, + 1

where

o =ka , B=kB, & =ko

kwp
VE(WE+1) -1
This means that the replacement of o with ka and  with kS can be
compensated by a change of the variance/covariance parameters in such
a way that the distribution of the data set remains unchanged. Thus,

it does not make any sense to talk about estimation of o and 3 in this
case either.

w=Vk2(w2+1)—1 and p =

There are, of course, parameter functions that can be estimated. Among
these we can mention a/v1 + w?, 5/ (the values of ®’s argument for
x = 0 and z — oo, respectively) and —a/f (the value of z for which
the success probability is %) But it is difficult to see why one should be
interested in estimates of these quantities.

In addition to this, the model has some peculiar properties which would
make it difficult to interpret the parameters a and 3 even if we could
estimate them. In the special case 8 = p = 0, for example, the expression
for the success probability takes the form

a
PY.=1)=9® )
( ) <\/w2+1+52x§)
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Thus, 8 = 0 does not imply that the success probability is independent
of the covariate. The probability depends on z. in a rather unusual way.
As we can easily see, it converges to % (1) as z. — +oo, and for z. =0
it takes its maximum or minimum (depending on whether « is positive

or negative). The dependence is not even monotone when « # 0.
Furthermore, the model has a very confusing property, which we illus-
trate only for the case where p = 0 because the algebra becomes slightly
simpler in this case. Provided that 62 > 1 (which, by the way, can al-
ways be obtained by the above mentioned transformation by a factor k)
and that all values of . are positive, we can rewrite the argument to ®
as follows, dividing by 2. in nominator and denominator.
at + B ’ .
o+ P, . o + [z,

R [ (e (e

where .
a/ - ﬁ 9 ﬁ/ =a , 'T/c -
Ze

Ww=v02—-1 and ¢ =+Vw?2+1.

This means that if all values of the covariate are replaced by their in-
verses, while intercept and slope are interchanged (!) and some compen-
sating changes of the two variances are made, we end up with exactly
the same distribution of data as before. We can even do this in the case
where o and [ have the same sign. In this case a seemingly positive
(or negative) effect of the original covariate turns into a seemingly pos-
itive (or negative) effect of its inverse. This is just algebra, of course,
but it means that the usual interpretation of the sign of the regression
coefficient 3 breaks down.

Our conclusion from all this is, of course, a warning against these models
in the case where all n. = 1. If they can measure anything at all it is a
useless mess of irrelevant functions of the variance/covariance parame-
ters and the parameters a and 8 that were originally of interest. For the
probit models, this follows from what was said above. For the logit mod-
els it follows from the fact that they are, in practice, indistinguishable
from the probit models.

The problem which originally motivated this work is that some statistics
packages can handle these models and “estimate” in them even when all
the n. are 1. Markov Chain Monte Carlo and other formally Bayesian
methods have the property that they can produce estimates of non—
identifiable or approximately non—identifiable parameters without really
discovering it, because the prior distribution in itself holds “information”
about these parameters. Be careful when estimates are very sensitive to
the choice of prior, even when the priors are very flat.

7



5. But what do we do then?

The conclusion of all this may appear somewhat destructive. Not only
do we reject the possibility of using random effects and random coeffi-
cients models in the case where customers are only observed once. The
final remarks of the previous section also indicate that the interpretation
of the parameters in the random coefficients model can be quite compli-
cated, even when several purchases are observed for each customer.

Our final (and more positive) remark is that the simplest of all logistic
regression models, the model

P(Y.=1) = AMa+ fz.)

with only two parameters (or 1 + K in case of K covariates) is actually
a perfectly respectable and very useful model in the case n. = 1, if it is
interpreted correctly. This may appear a bit confusing at the moment.
But the reason is that our discussion up to this point has been based
on the interpretation of the basic event as “customer ¢ performs his
or hers 7’th purchase”. The correct interpretation of the simple model
above should be in terms of basic events of the form “a random cus-
tomer performs a purchase”. In this interpretation, the two sources of
randomness (customers are different, and even the same customer may
behave differently on different occasions) are pooled. Quite often, this
description of customer behaviour is exactly what is needed in the oper-
ational use of these models for price setting, advertising decisions etc.,
where the distinction between the two sources of variation is unimpor-
tant. Moreover, as we have seen in section 3, this model actually comes
out (exactly in the probit case, approximately in the logit case) as the
correct model when a random customer effect is assumed. The fact that
the parameters o and f3 are actually a/vw? + 1 and 8/vw? + 1 from the
underlying random effects model need not bother us, when the simple
logistic regression model is interpreted in this way.

The drawback is that this will only work if all purchases (or, in practice,
almost all purchases) are made by different customers. In principle, the
model will produce incorrect results (too narrow confidence intervals for
coefficients, too many false significances) when there is customer hetero-
geneity and some of the n. are > 1. Other things must be done then,
and this is where the random effects models and the random coefficients
models come in. See also Birch and Tjur (forthcoming) and Tjur (2002)
for a more primitive and easy solution.

Thanks to Jgrgen Kai Olsen for drawing my attention to this problem
during several interesting discussions.
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