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Abstract
Discrete choice experiments are widely used in relation to health

care. A stream of recent literature therefore aims at testing the validity
of the underlying preference axioms of completeness and transitivity,
and detecting other preference phenomena such as unstability, learn-
ing/tiredness e¤ects, ordering e¤ects, dominance, etc. Unfortunately
there seems to be some confusion about what is actually being tested,
and the link between the statistical tests performed and the relevant
underlying model of respondent behaviour has not been explored in
this literature. The present paper tries to clarify the notions involved
and discuss what can be tested in a general frequency of choice frame-
work and more speci�cally in a random utility model.
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1 Introduction

Stated preference methods are being increasingly used in many areas of ap-
plied economics, such as health care, environmental evaluation and marketing
studies.
In the case of health care, for example, preferences are related to various

interventions that are di¢ cult to evaluate for the involved respondents. The
choice situation is often very hypothetical and preferences usually cannot be
revealed through actual behaviour and are consequently di¢ cult to elicit.
Therefore, as in any other exercise in economic modelling, the analyst is
forced to make certain assumptions concerning respondents preferences in
order to obtain a useful model from the available data.
The validity of such preference assumptions has been addressed by a

stream of recent literature, e.g. Ryan et al. [17], Shiell et al. [21], Johnson
and Mathews [6], Ryan and Bate [16], McIntosh and Ryan [12], San Miguel
et al. [18], Scott [19], Ryan and San Miguel [15]. These studies aim to test
whether standard properties of preferences like completeness, transitivity,
stability, and (the absence of) learning and tiredness e¤ects, ordering e¤ects,
dominated preferences, etc, are satis�ed by respondents in various discrete
choice experiments.
Unfortunately the literature is somewhat unclear when it comes to whether

these properties are, in fact, subject to statistical tests under the given cir-
cumstances. For example, completeness has drawn much attention although
it appears that within any relevant model it is meaningless to test for com-
pleteness, as we shall argue in detail.
Moreover, some of the studies refer explicitly to the random utility model,

with the aim of testing the underlying preference axioms. However, the
link between the statistical tests performed and the random utility model of
respondent behaviour has not been explored, and it is questionable whether
the proposed tests relate to a validation of this model at all.
In the present paper we try to clarify the main notions involved: We dis-

cuss how preference phenomena like completeness, transitivity, learning and
tiredness e¤ects, ordering e¤ects, and other aspects of preference behaviour,
can be given exact meaning and related to di¤erent choice models.
In Section 2 we review a few well-known results from utility theory, and

recall that completeness of preferences is not a prerequisite for utility rep-
resentation. We argue that completeness is merely a technical assumption
that one may, or may not, impose initially but it has no real behavioural sub-
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stance. Theoretically, it does play a minor role for the testable implications
of utility representations, but in the present context this point is unlikely to
have empirical relevance.
In Section 3 we discuss the approach of the previous literature. We focus

on a recent contribution by Ryan and San Miguel [15] where tests for incom-
pleteness and other phenomena were suggested. Their paper is in some sense
representative for many of the above-mentioned studies.
In case of repeated choice, discussed in Section 4, preferences are naturally

interpreted as choice frequencies (May [8]) and it becomes impossible to
distinguish between �coin-�ip�answers (interpreted as incompleteness) and
similarity of alternatives (interpreted as indi¤erence). Consequently, tests for
completeness cannot be performed within this model. However, it is possible
to test for transitivity and we suggest one way to perform such a test.
With more structure on preferences we can use the random utility model

(McFadden [10]). Within the framework of this model, preferences are tran-
sitive by construction. In Section 5 we discuss the model and indicate how
various preference phenomena can be interpreted and tested within extended
versions of this model.

2 Completeness of preferences and utility rep-
resentations

We start out by reviewing two general results from utility theory which
demonstrate that completeness of preferences is not a prerequisite for utility
representation and then discuss the relevance in the present context.
Let X be a �nite set of alternatives, and let % be a binary relation on X

where x % y has the interpretation that \x is at least a good as y". From
% we de�ne strict preference � and indi¤erence � in the usual way.1 It is
well-known (see e.g. Fishburn [3]) that if % is complete (i.e. x % y or y % x)
and transitive (i.e. x % y and y % z implies x % z), then there exists a
function u : X ! R that represents % in the sense that

x % y , u(x) � u(y): (1)

However, it is important to recognize that completeness is not a precondition
for maximization of a utility function (Peleg [14], Fishburn [3], Vind [23]).

1x � y if x % y and y 6% x; and x � y if x % y and y % x:
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Indeed, for consistency with an underlying binary relation the utility function
u only needs to ensure that dominated alternatives are not selected, i.e.:

x � y ) u(x) > u(y): (2)

It can be shown that there exists a utility function u satisfying (2) if and only
if strict preference � is acyclic (i.e. we never have x1 � x2 � � � � � xt � x1
for �nite t), see e.g. Fishburn [4].
Thus, there are two interpretations of a utility representation, (1) and (2),

depending on whether completeness is assumed or not. In order to obtain a
representation (1), transitivity must hold, while in (2) acyclicity must hold.
Note that transitivity implies acyclicity but the converse is not true, i.e.
acyclicity is the weaker property. Transitivity and acyclicity are very similar
properties indeed and in practice one often seeks to reject transitivity by
demonstrating cycles (see e.g. [8]). In any case, cycles, not incompleteness,
seems to be the phenomenon of interest here.
Completeness is only important if we can point to intransitivities but not

to any cycles in revealed preferences. For example, assume that there are
three alternatives fx; y; zg. If observations indicate that x � y; y � z but
x 6� z then if completeness is assumed we must have z % x and there is no
utility representation (1) due to intransitivity. On the other hand, without
completeness x 6� z may indicate that x and z cannot be compared and since
there are no cycles, a utility representation (2) holds.
In terms of choice experiments there is consequently no reason to assume

that empirical observations are drawn from a complete ordering rather than
from a partial ordering on the alternatives actually compared. For the pur-
pose of testing representability by means of a utility function it su¢ ces to
test for cycles or intransitivity within the observed choices. As such there is
no behavioural substance in the axiom of completeness; whether or not it is
assumed is more or less a question of semantics.

3 What is tested in the literature?

In light of the highly limited role played by the axiom of completeness it
seems surprising that recent papers (in particular in the �eld of health eco-
nomics) are preoccupied with testing whether completeness is satis�ed or
not in various choice experiments, see e.g. [21] and [15] (see also [13] and
[22]). Apparently, it is because they �nd that there is a risk that agents
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when confronted with options over various alternatives (that are di¢ cult to
grasp as for example in case of health care interventions) have no well formed
preferences at all and just delivers an answer to satisfy the analyst. Such be-
haviour is then assumed to be revealed by con�icting rankings in case of
repeated choice � taken as a sign of incompleteness.
But what is in fact tested? For example, the paper by Ryan and San

Miguel [15] developed a test for completeness interpreted as the assumption
that individuals have �well-de�ned�preferences for any choice they are pre-
sented to. Unfortunately, what �well-de�ned�means in this context seems
unclear. In the experiment, two choice situations, choice A and choice B, was
repeated, with A repeated before B was introduced (this procedure was then
again repeated in three waves). In each choice situation two alternatives were
presented; the respondent was then asked to indicate strength of preference.
If there were no clear reversals in (stated) preferences neither in the second
round of choice A nor in the second round of B, this was interpreted as (an
indication of) �complete preferences�. If preference reversals occured both
in A and B this was interpreted as �incomplete preferences�. Preference re-
versal in A but not in B was interpreted as a �learning e¤ect�, and �nally
if there was a preference reversal in B but not in A then the interpretation
was �random error (or �tiredness�).2

We may try to illustrate the situation as in Figure 1 below (for simplicity
a binary choice situation fx; yg is considered with an arbitrary number of rep-
etitions). In Figure 1A there is a preferred alternative x but random shocks
may change observed choice (�random error�). In Figure 1B choices are ar-
bitrary (�incomplete preferences�). In Figure 1C there is a learning e¤ect
in the sense that preferences converge after initial randomness (�learning�).3

Finally, in Figure 1D we have illustrated another possibility, preferences are
�complete�but change over time (�unstable preferences�).

Figure 1 here.

2Note that by chosing from the same choice sets twice, preference reversals cannot be
explained by �menu-dependent�choice rules, see e.g. Sen [20].

3The word �learning� is somewhat misleading since there is no obvious link between
learning (in the sense of becoming wiser) and convergence of choice. For example, choices
may be stable due to initial ignorance and learning about the true complexity of the matter
may introduce doubt and thereby unstability.
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According to Figures 1A and 1B there is no point in distinguishing be-
tween incompleteness and random preferences since indecisiveness and noise
cannot be disentangled based on choice observations. Hence, if the under-
lying model is assumed to be a random utility model (which seems sensible
provided that �mistakes� are to be expected in all choice experiments) in-
completeness cannot be separated from noise � this will be further clari�ed
in Section 5. Learning e¤ects, on the other hand, are quite di¤erent due to
the fact that choices become more stable over time, i.e. noise is reduced over
time. By repeating a choice once we cannot distinguish between learning and
measurement error. By repeating more than once we can observe if stated
preference seems to converge, see Section 5. Unstability, as in Figure 1D,
seems to relate to positive autocorrelation, a rather subtile e¤ect in this con-
text (and di¢ cult to identify without having data for a longer sequence of
repeated choices). In particular, testing the di¤erence between learning and
unstability is impossible using tests as in [15].
The impossibility of making a clear distinction between incompleteness

and noise is, in fact, very well illustrated by the empirical examples in [15]:
One of the examples involves a set of questions concerning supermarket at-
tributes, where the alternatives are only vaguely speci�ed. For instance,
prices can be �high, medium or low�, without any clear quantitative speci�-
cation. Obviously, many respondents will react to this by simply refusing to
answer, or � as a more polite alternative � to give only vague answers. It
is really a matter of taste whether this should be taken as an indication of
incompleteness, an indication of noise, or an indication of alternatives that
are di¢ cult to distinguish from each other. Not surprisingly the number of
imprecise preferences in the supermarket study is, in most cases, higher than
in the two other studies presented, where the description of the alternatives
is more precise.
The point is that completeness cannot be accepted or rejected on the basis

of a standard questionnaire study, because the results of such a study will
always be reported in terms of relative frequencies. If preference for x over y
is de�ned as �a majority claims to prefer x for y�, any two alternatives can
be compared. The only exception is the case where all respondents refuse
to answer a question. Therefore, it might be an idea as e.g. suggested in
Oliver [13], to add to each question a response category labelled �comparison
meaningless�. If all respondents put their votes in that category we can,
with some weight, conclude that either the ordering is incomplete, or the
alternatives are so vaguely de�ned that the respondents are unable to answer.
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However, this category must certainly not be confused with the mid�category
labelled �indi¤erent�, which may very well be selected as the result of a
careful comparison of well�de�ned alternatives.

4 Testing transitivity

Assume, for simplicity, that we have a data set of pairwise comparisons (either
for a given respondent facing repeated choices or a group of respondents
facing a single choice). Thus, each question has the form �which of the
following two alternatives x and y do you prefer?�, where x and y are elements
of the given set X of alternatives.4 In addition, we make the simplifying
assumption of unambiguous answers, i.e. answers like �I don�t know�or �I
don�t care�are forbidden. As we shall see in Section 5, questions allowing for
indi¤erence can, under certain simplifying assumptions, be handled simply
by exclusion of the indi¤erence�answers from the data set.
Now, let p(xjx; y) be the probability that x is chosen among alternative

x and y. Since indi¤erence is not possible, we have

p(xjx; y) = 1� p(yjx; y):

Under our simplifying assumptions, the probabilities p(xjx; y) can be es-
timated by the corresponding relative frequencies p̂(xjx; y). The preference
relation induced by the choice probabilities is given by

x % y , p(xjx; y) � 1

2

and the estimate of this relation becomes, accordingly

x%̂y , p̂(xjx; y) � 1

2
:

Since any pair (x; y) of alternatives will satisfy either x % y or y % x,
a test for completeness is meaningless. Of course, it can be argued that
if p̂(xjx; y) is close to 1/2 it is an indication of �coin��ip� answers, which
could be explained by the respondents�lack of ability to perform a relevant
comparison. But it can also be taken, simply, as an indication of x and y

4It is easy to generalize the method presented here to the case where three or more
alternatives are presented in each comparison, see e.g. Block and Marschak [1].
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being very similar alternatives, and there is no way of distinguishing between
these two explanations.
However, a test for transitivity is possible. Transitivity of the induced

relation % means (ignoring ties p(xjx; y) = 1
2
which are not likely to occur)

that for any triple (x; y; z) we have5

[p(xjx; y) < 1

2
and p(yjy; z) < 1

2
] ) p(xjx; z) < 1

2
:

Thus, in order to test that a given triple (x; y; z) does not give rise to any
violation of transitivity, the following procedure will su¢ ce:
First, check whether the three comparisons (x; y), (y; z) and (x; z) all re-

sult in signi�cantly decisive conclusions. Or, equivalently, check by standard
binomial tests that all three estimates p̂(xjx; y), p̂(yjy; z) and p̂(xjx; z) are
signi�cantly di¤erent from 1

2
. If this is not the case, transitivity must neces-

sarily be accepted as far as this triple is concerned. If the three comparisons
are decisive, check whether their ordering is in accordance with transitivity
or not. If not (i.e. if the ordering is cyclic, which happens in 2 of the 8
possible cases), transitivity is rejected, otherwise it must be accepted.
An overall test for transitivity is, in principle, just a matter of doing this

for all possible triples. But here we must (in particular if many alternatives
are involved) take �mass signi�cance�into account, i.e. the phenomenon that
when many tests on level (say) 95% are performed, some of them will usually
be signi�cant just by accident. A procedure that takes this into account goes
as follows:
First, isolate all pairs (x; y) for which p̂(xjx; y) is signi�cantly di¤erent

from 1
2
on a suitable level. This level should be determined in such a way

that we are almost certain that all these �decisive�comparisons are actually
correct. Since there are

�
n
2

�
pairs of alternatives (where n is the number of

alternatives), the only way of ensuring this is to perform the tests on level
1 � �=

�
n
2

�
= 1 � 2�=(n(n � 1)), where � is chosen (as usual) to be 0.05

or 0.01 or whatever is preferred. In this way we can be sure that a �false
decisive comparison�occurs with probability at most �. When these pairs
have been isolated, check that the corresponding graph has no cycles. If there
are cycles, transitivity is rejected, otherwise it must necessarily be accepted.

5Or, equivalently, lack of transitivity means that there exists a triple (x; y; z) (think of
it as a 3�cycle x ! y ! z ! x) for which the three probabilities p(xjx; y), p(yjy; z) and
p(zjz; x) are all less than 1

2 .
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It may be possible to invent more re�ned versions of this test, but basically
there is not much more to be done. Since the hypothesis of transitivity is
stated in terms of inequalities rather than equalities, it is not possible to
construct a standard �2 test, like those usually applied in hypothesis testing
for binomial data.
This test for transitivity is � though a rather elementary construction

� to our knowledge not mentioned in the literature (see, however, [1] and
[5] for studies of related problems). The reason for this is probably that
the more structured statistical models (like the random utility model) that
are usually applied in this context have transitivity as an intrinsic property.
Thus, the acceptance of one of the models discussed in the next section (e.g.
by an ordinary goodness�of��t test) is an implicit acceptance of transitivity.
Notice that the relative frequency of respondents that show some sort of

intransitive behaviour (as considered e.g. in McIntosh and Ryan [12]) has
not much to do with this test. If the number of comparisons performed by
each respondent is large, and if the alternatives are di¢ cult to distinguish,
many of the respondents are likely to get into some sort of self-contradictory
behaviour. But this does not necessarily imply that the underlying relation
is intransitive.

5 Statistical models for discrete comparisons

In this section it is explained how concepts like incompleteness, learning,
tiredness and related issues can be discussed in the framework of a statistical
model. For a detailed exposition of such models, see e.g. McFadden [11].
Discrete comparisons, in this context, refers to a situation where a number

of respondents are confronted with a number of questions of the form �which
of the following k alternatives do you prefer�.6

The classical model for this kind of situations is the so-called Bradley�
Terry model (see [2]), which can be stated as follows: Let �x denote the (more
or less �ctive) probability that a (random) respondent, when presented to the
entire setX = f1; : : : ; ng of alternatives, answers �x�. Thus, �1+� � �+�n = 1,
provided that an answer must be given, which is assumed for the moment.
A crucial (and in some contexts questionable) assumption, called the

�axiom of independence of irrelevant alternatives�7, is that if only a subset of

6The case k = 2 corresponds to the pairwise comparison setup of the previous section.
7See e.g. Luce [7] and McFadden [10]
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the setX of alternatives is presented to the respondent, then the probabilities
can be derived from the situation involving the full set of alternatives as the
conditional probabilities, given that the choice happens to fall in the subset.
For example, if three alternatives x, y and z are presented, we have (with an
obvious extension of the notation used in section 4)

p(xjx; y; z) = �x
�x + �y + �z

:

The drawback of this assumption is that one can easily invent examples
where it is unrealistic. If a pair fx; yg of clearly distinct alternatives is
extended by an alternative z which appears very similar to x, then it is
not likely that the probability of selecting y will become much smaller �
though this is actually what the formula suggests. Nevertheless, the model
is standard in this context, and the problem described above has more to do
with the interpretation of parameters than with the validity of the model in
concrete situations, where the sets of alternatives involved are usually not
subsets of each other, see [10].
A nice property of this model, which relates to our discussion of com-

pleteness, is that it is consistent with the simplest possible handling of �don�t
know�answers, in the following sense. If an indi¤erence category �which
can suitably be named 0 �is added, and if we can rely on the assumption
that this alternative plays a role which is similar to any other alternative,
then the �don�t know� answers can be handled simply by removing them
from the data set.8

Another nice property is automatic transitivity of the induced prefer-
ence relation. Indeed, since x � y is obviously equivalent to �x < �y, the
transitivity condition reduces to the trivial statement

�x < �y and �y < �z ) �x < �z :

8For example, if two alternatives x and y are presented, the probability of choosing x
when indi¤erence is allowed becomes

p(xjx; y; 0) = �x
�x + �y + �0

:

But the conditional probability of selecting x, given that either x or y is selected becomes

p(xjx; y) = �x
�x + �y

which according to the assumption coincides with the probability of selecting x when 0
is not among the alternatives presented.
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This result is further supported by the result noticed by McFadden [10] that
the Bradley�Terry model can be derived as a random utility model, i.e. a
model that explains the choice made by a respondent as the one that max-
imizes the utility over the alternatives presented. Since choices vary from
occasion to occasion and between respondents, this utility function has to
be random. More speci�cally, let v be a function which to each alternative
x 2 X assigns a real number v(x), which can be interpreted as a sort of
�average utility� in the population. The random utilities determining the
choices are assumed to take the form

Uri(x) = v(x) + "xri;

where "xri is a random variable associated with alternative x in the i�th
choice performed by respondent r. These �error terms�are assumed to be
independent and identically distributed, and the choice made by a respondent
in any choice situation is assumed to be the choice that maximizes the value
of the random utility function Uri. What McFadden [10] showed was that if
the common distribution of the "xri is assumed to be the normalized extreme
value distribution (c.d.f. P ("xri � z) = exp(� exp(�z))), then this model
coincides with the Bradley-Terry model with parameters

�xi =
exp(v(xi))

exp(v(x1)) + � � �+ exp(v(xk))
;

for alternatives X = fx1; : : : ; xkg.9
The random utility model has been widely applied. For example, in situ-

ations where alternatives are speci�ed by covariate values, as in the dentist
and cancer cases described in [15], a useful idea is to express the deterministic
component v(x) of the utility function as some speci�ed function of a linear
combination of (optionally transformed) covariate values. In this way, v(x)
can be split up as a sum of contributions from the covariates, which in some
cases enables us to give a very concrete interpretation of covariate e¤ects in

9In particular, when only pairwise comparisons are available, the model becomes

p(xjx; y) = �x
�x + �y

=
exp(v(x))

exp(v(x)) + exp(v(y))
=

exp(v(x)� v(y))
1 + exp(v(x)� v(y))

which is the standard logistic regression model for pairwise comparisons with �subtractive�
logit�linear structure.
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terms of prices (like the price of waiting an extra 10 minutes in a dentist�s
waiting room according to the average public judgement, etc.).10

Within the framework of the random utility model some of the more vague
concepts related to discrete comparisons can be formalized. We shall try to
provide some suggestions in this direction.
The fact that incompleteness is indistinguishable from close similarity of

alternatives is clearly demonstrated by the model when a scale parameter is
introduced for the error term of the random utility function. If we write the
random utility as

Uri(x) = v(x) + �"xri

where � is a scale parameter, similar to the standard deviation in a regression
model ("xri is still assumed to be normalized extreme value distributed), it
becomes clear that a large degree of incompleteness (meaning that respon-
dents seem to give their answers more or less at random) is equivalent to a
large value of �, whereas close similarity of alternatives means that the values
v(x) all lie in some narrow interval. But since an upscaling of the function
v is obviously equivalent to a downscaling of the error term "xri, and vice
versa, it is an intrinsic property of this model that it cannot distinguish be-
tween these two phenomena. To avoid this overparametrization we may as
well take � = 1 in the model where � is constant.
In addition, the idea of a scale parameter on the error term allows us to

build a learning e¤ect into the model in the following way. If respondents are
exposed to the same set of alternatives several times, or to di¤erent combi-
nations involving the same alternatives, a learning e¤ect may be interpreted
as respondents becoming more and more stable and consistent in their se-
lections. This phenomenon becomes possible in the model if we allow for a
scale parameter �i that varies from occasion to occasion (i). If �i decreases,
a learning e¤ect is present. The phenomenon that �i increases at some point
seems to be appropriately described by the word tiredness.

10This model can be tested against the full model or the logit�linear subtractive model by
standard �2 tests, similarly the signi�cance of single covariates can be tested, coe¢ cients
can be estimated with standard deviations and so on. In questionaire designs where the
alternatives are speci�ed in such a way that alternatives are �balanced out�, in the sense
that if one alternative is preferable to another on some covariates, then other covariates
will compensate for this by di¤erring in the opposite direction, this kind of analyses are
often referred to under the name �conjoint analysis�. The examples given in [15] are of
this kind.
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Heterogeneity between respondents can also be modelled. In practice,
a realistic expectation is that the random variation from respondent to re-
spondent is more pronounced than the variation from occasion to occasion
for the same respondent. Moreover, a speci�c respondent may very well
show a stable behaviour which is di¤erent from that of another respondent.
The deterministic utility function v(x) represents a kind of population av-
erage, but respondents may have individual preferences that are di¤erent
from this average. A model that takes this into account could be a variance�
component�type model based on a random utility function of the form

Uri(x) = v(x) + !�xr + �"xri

where !�xr is an error term of the same kind as �"xri, except that it is speci�c
to the alternative x and the respondent r, but independent of the occasion
i. Computationally, this model is di¢ cult to handle, but conceptually this is
exactly what is needed to describe heterogeneity between respondents. This
model is not equivalent to a Bradley�Terry model or any other simple model.
Models of this kind are usually speci�ed with normal rather than extreme
value distributed error terms.
An indi¤erence category can be incorporated in the model in a simple

way, which in most cases is likely to be more realistic than the ignorance�of�
indi¤erence�cases method proposed earlier. Consider for simplicity the case
of pairwise comparisons. Instead of assuming

Choice =
�
x if Uri(x) > Uri(y)
y if Uri(x) < Uri(y)

we could assume, for some parameter �0 > 0 which can be interpreted as the
�least noticeable utility di¤erence�, that

Choice =

8<:
x if Uri(x) > Uri(y) + �0
0 if jUri(x)� Uri(y)j � �0
y if Uri(x) < Uri(y)� �0:

One might even consider models where the parameter �0 varies from re-
spondent to respondent, in accordance with the fact that some people are
more hesitant with decisive conclusions than others. A similar model �
with an additional parameter �1 > �0 to determine the threshold between
�preference�and �strong preference�� can be used in situations where the
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responses are given on (say) a �ve�point scale (as e.g. in [15]). These mod-
els are closely related to the models for discrete ordinal data described in
McCullagh [9].
As a �nal remark we mention the possibility of taking a preference�for�

�rst�met�alternative parameter into the model. The order in which alter-
natives are presented may in�uence the decision taken, typically by giving
a higher probability to the alternatives presented �rst. For this reason, it is
important to balance the questionnaires in such a way that the alternatives
presented are not always given in the same order. Provided that this has
been done, there is a rather straightforward way of building this into the
model. In the case of pairwise comparisons, it can be done by the introduc-
tion of an extra preference�for��rst�met�parameter, which is simply added
to the deterministic utility function�s value for the �rst alternative before
the maximization. If the utility function is written as a linear combination
of covariate values, this has the simple interpretation that the property of
being presented �rst is an extra measure of quality (represented by a dummy
covariate) with potential (positive or negative) in�uence on the choice. For
triplewise comparisons and higher, it becomes a bit more complicated.

6 Conclusion

In this paper we have examined the possibilities for embedding tests of pref-
erence axioms within probabilistic choice models. We have in particular
discussed the role of completeness and transitivity, and provided some sug-
gestions for dealing with notions like learning or tiredness, heterogeneity,
indi¤erence categories and ordering e¤ects within the random utility model.
As demonstrated by our investigation there seems to be good reasons to

start out with the random utility model which takes both completeness and
transitivity as inherent properties. Although both concepts play a theoretical
role and in particular transitivity can be tested within a frequency of choice
model, for most available data sets it seems unlikely that transitivity can be
rejected.
Finally, there seems to be many papers that exclude data from respon-

dents for further analysis if they do not pass all tests of a certain consistency
axiom. An important message of this paper is that there is no reason what-
soever to eliminate data, as long as the observed violations are within the
range of what could be expected in the relevant model.
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