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Abstract

The scenario considered is that of a credit association, a bank or an-

other �nancial institution which, on the basis of information about a

new potential customer and historical data on many other customers,

has to decide whether or not to give that customer a certain loan.

We discuss three popular techniques: logistic regression, discriminant

analysis and neural networks. We shall argue strongly in favour of

the logistic regression. Discriminant analysis can be used, and for

reasons that can be explained mathematically it will often result in

approximately the same conclusions as a logistic regression. But the

statistical assumptions are not appropriate in most cases, and the

results given are not as directly interpretable as those of logistic re-

gression. Neural network techniques, in their simplest form, su�er

from the lack of statistical standard methods for veri�cation of the

model and tests for removal of covariates. This problem disappears

to some extend when the neural networks are reformulated as proper

statistical models, based on the type of functions that are considered

in neural networks. But this results in a somewhat specialized class of

non{linear regression models, which may be useful in situations where

local peculiarities of the response function are in focus, but certainly

not when the overall | usually monotone | e�ect of many more or

less confounded covariates is the issue. We discuss, within the logistic

regression framework, the handling of phenomena such as time trends

and corruption of the historical data due to shifts of policy, censor-

ing and/or interventions in highrisk customers' economy. Finally, we

illustrate and support the theoretical considerations by a case study

concerning mortgage loans in a Danish credit association.

Keywords: Credit scoring, discriminant analysis, logistic regression, neural

network, event history analysis.
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1 The problem

Suppose we have historical data on n customers, in the form of

covariates xij, i = 1; : : : ; n, j = 1; : : : ; k, and

responses yi, i = 1; : : : ; n.

The responses are assumed to be binary, with the event \bankruptcy" coded

as 1, \not bankruptcy" as 0. Bankruptcy in this context means the event

that the customer, willingly or unwillingly, fails fully to repay the loan; thus,

yi = 0 means that customer i full�ls his contract.

The covariates are assumed to represent the information available to the �-

nancial institution about the customers. If, for a moment, we de�ne the

customers as persons (in many applications we would also have institutions,

�rms, married couples, etc.), the covariates could include informations like

age, sex, marital status, income, housing expenses, certain household ex-

penses, information about other loans and payment behaviour during the

period of the loan, perhaps even payment behaviour in earlier periods with

other loans. To this comes, in the case of a credit association, a lot of

information about the value of the property, other mortgages, etc. When

evaluating a new applicant we must make our decision based on a descrip-

tion af the customer in terms of covariate values x1; : : : ; xk | often with a

lot of \missing values", for instance information which is not meaningful for

a new customer, or information that just happens not to be available right

here and now.

The problem could be one of two, one, the decision of whether to accept

or reject an application of a new loan, two, the decision of which action

to take when repayments of an existing loan are defaulted. The decision

of whether to give a new loan could be seen as equivalent to answering the

question: \if we give this loan, what is the probability that this customer will

go bankrupt?" Similarly, when repayments af an existing loan are defaulted

an action could be based on the answer to the question \ if we continue the

loan, what is the probability that this customer will go bankrupt?"

The action to be taken in case of defaulted repayments could be:

1. Terminate the loan (with potential losses) via legal rules.

2. Replace the loan by a new loan with di�erent (easier) payback condi-

tions.
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This is similar to the situation of determining new loan applications with

termination being equivalent to rejection and replacement being equivalent

to acceptance. Consequently, the problem of which action to take when

repayments of an existing loan are defaulted, can be seen as a special case

of treatment of new loan applications. Therefore, we have used the senario

of new loan applications in our description of the theory. However, the case

illustrating our �ndings is of the type \defaulted loans".

But let us take a critical look at all the over{simpli�cations we have already

made. First of all, the event \bankruptcy" (and thereby the probability of

this event) is not quite well{de�ned (see below), and even if it makes some

sense it is only a small part of what we are interested in. What we really

would like to know is something like the joint probability distribution of two

variables related to the future behaviour of the customer, namely

| the amount of money we are going to lose if and when this customer is

unable to pay back (set to zero if this never happens), and

| the time when this event takes place (set to anything, most naturally +1,

if this never happens).

Here we have even made an additional simpli�cation, because the deviation

from a regular payment 
ow may very well become more complicated than

accounted for by a single event, with several delayed or reduced rates. But

in the exclusive situations where it makes sense, this bivariate distribution

is the least we can do with if we want to make exact insurance mathematics

type calculations. Together with information about (or quali�ed predictions

of) the rate of interest, administration expenses, etc., a reliable estimate of

this bivariate distribution would provide us with everything that is needed

for a full analysis of the decision problem in terms of a comparison of the

discounted expected loss with the discounted expected gain.

The presence of the variable \time of bankruptcy" raises another problem,

which also is related to the historical data. What do we mean by \the cus-

tomer going bankrupt"? The immediate interpretation is that \the customer

goes bankrupt sooner or later", but this event is related to the future not

only for our new customer, but also for a large portion of the customers in

the historical data set. In fact, the response yi is only observed for those

(hopefully few) of them that already went bankrupt (yi = 1), and for those

that are no longer customers after full repayment (yi = 0). In statistical

terms, the problem is that the variable \time of bankruptcy" is censored at

4



the endpoint of the historical study. Methods for the handling of censored

data are extensively studied and developed in a biostatistical context, and

we shall return to this point in section 5. But in the present section, and

in the discussion of the three main methods, we make the following | very

restrictive | assumptions.

In order to make the responses yi fully observable, we pretend that we are

only interested in bankruptcy within a certain period, say the �rst year.

Accordingly, we exclude from our historical data set all customers that have

been customers for less than a year, and rede�ne the responses such that

yi = 1 means \customer i went bankrupt during the �rst year of his loan".

Later bankrupts are ignored. Similarly, we rephrase our problem concerning

the new potential customer to \what is the probability that this customer

goes bankrupt within a year?".

This is not exactly the question we posed from the beginning. Nevertheless,

it should be realized that we are much better o� with an estimate of this

probability than without any quantitative considerations at all. For short

loans a time horizon of one year may be all that is needed. For longer loans

a reasonable assumption may very well be that the expected loss associated

with a bankruptcy during the �rst year is proportional to the total expected

loss, or at least that there is a monotone relation between these two quanti-

ties. More generally, we can say that the diÆcult part of the problem is to

combine the many covariate values to a single measure of credit worthiness.

A rescaling of that measure or a monotone transformation of it does not

matter, since we are basically only interested in the decision rules associated

with that measure. By this we mean the decision rules of the type \reject

loan if measure exceeds threshold value, accept otherwise". Once the general

measure of credit worthiness is given, we can always decide which threshold

value to operate with, simply by selecting a value that would have given ac-

ceptable decisions if the corresponding decision rule had been applied to all

customers in the historical data set. We may (and probably should, in most

cases) even adjust this method in order that also the proportion between

the expected loss in case of bankruptcy and the expected gain in case of full

repayment is taken into account. But this aspect, which has more to do with

economics than with statistics, will be ignored in the following.

In addition, we make the standard assumption that all covariate values are

observed for all customers in the historical data set as well as for the new

potential customer. With reference to the total data set, this is usually
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unrealistic. What we mean by this is, of course, that whenever a piece of

information is missing, we must remove either the corresponding covariate or

the corresponding customer from the present analysis. An immediate con-

sequence is (since the new potential customer cannot be removed) that all

covariates that are not observed for the new customer must be removed. In

practice, this means that it may be necessary to use di�erent historical data

sets for di�erent new customers. For the historical data it is natural to start

by removing the covariates which (by common sense or by some statistical

test) are irrelevant for the prediction of the probability of bankruptcy, in

particular those with many missing values. We may also be forced to re-

move covariates that, although they seem to contribute signi�cantly, are too

sparsely observed. However, this problem is often encountered in the analysis

of data of some complexity. We shall assume in the following three sections

that all these tedious compromises have been made in advance, in order that

we may focus our attention on a fully observed rectangular data set.

2 Logistic regression { the forwards method

The problem is to estimate the probability of bankruptcy, say

P (y = 1) = p(x1; : : : ; xk);

where x1; : : : ; xk are the covariate values for the new customer. Since we want

a method that can handle any covariate pattern, we can also say that we want

to estimate the function p, which to an arbitrary covariate pattern assigns

the probability that a customer with this pattern goes bankrupt within the

�rst year.

If it was not for the fact that the responses are binary rather than numeric,

this looks very much like a standard multiple regression problem. If, for a

moment, we imagine that the y's were some \degrees of credit worthiness"

on a continuous scale that could be observed after a year, a standard solution

to this problem would be to consider the hierarchy of regression models of

the form

yi = �0 + �1xi1 + � � �+ �kxik + �i;

describing the outcomes yi as sums of a linear combination of the covariates

and normal independent errors �i with mean zero and common variance �2.
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However, the fact that the responses are binary does not prevent this. The

standard statistical analogue to regression models, when the responses are

binary, is logistic regression or logit{linear modelling. The only di�erence

between ordinary linear regression for normal variables and logistic or logit{

linear regression for binary variables is that the expression of the expected

response as a linear combination of covariates is replaced with an expression of

the logit{transformed probability of positive response as a linear combination

of covariates; in our case,

logit (p(x1; : : : ; xk)) = �0 + �1x1 + � � �+ �kxk;

where the function

logit (p) = log

�
p

1� p

�
;

is the simplest choice of a function that \stretches" the probability interval

]0,1[ to the whole real axis. Other choices are possible (for example the inverse

to the c.d.f. of the normal distribution, often called the probit{transform),

but the logit function turns out to have some desirable algebraic properties in

this context, among which we would like to emphasize two properties related

to the interpretation of the model and its maximum likelihood estimates:

(1) As recently pointed out by Alan Lucas (2001), the maximum likelihood

estimates of the individual bankrupt probabilities (the �tted values) have

the following property. If the model includes a factor F , then for any level

f of that factor the average of the estimated bankrupt probabilities over the

corresponding set of customers equals the relative frequency of bankrupts

in that subset. For example, if there are di�erent types of loans involved

and the model takes this into account, then for each type the average of

the �tted bankrupt probabilities will equal the actual relative frequency of

bankrupts for that type. For a quantitative covariate, say the customers age,

we have the similar property that if the covariate is included in the model

as a simple linear term ��age, then the average age of bankrupters equals

the weighted average of ages over the whole population, when the estimated

bankkrupt probabilities are taken as weights. These exclusive properties of

the logistic regression model follow from its interpretation as an exponential

family. Actually, the likelihood equations are essentially all equations of the

types mentioned above, equating suÆcient statistics with their expectations

under the model.
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(2) In many applications bankruptcy is a rare event. For a data set consisting

of, say, a million customers with only 1000 bankrupts, it is tempting to

reduce the data size by construction of an arti�cial data set, consisting of all

the bankrupters and a small randomly drawn portion (say 1%, i.e. around

10000) of the non{bankrupters. This will hardly a�ect the accuracy of the

conclusions, because the shortage of bankrupters will be the dominating error

source in all matters regarding the di�erence between bankrupters and non{

bankrupters. Another exclusive property of the logit model is that it is

essentially una�ected by such a reduction of the data set; namely in the

very precise sense that if a logit model holds for the original data set, then

the reduced data set can be described by the same model with the same

parameters, except that the constant term �0 should (of course) be corrected

to account for the arti�cially increased probability of bankrupt. This means

that inference based on such a reduced data set can easily be translated to

valid inference about the original data.

Just as in ordinary multiple regression the technique is to identify and es-

timate a model which is as simple as possible, but still exhaustive enough

to explain the signi�cant relations between covariates and responses in the

historical data set. In this process, we can | with few and mainly technical

modi�cations | draw on the whole classical machinery of ordinary multiple

regression, including tests for the removal of terms from the model (which

are likelihood ratio tests based on the �2{approximation, not F{tests), the

introduction of interactions, product or polynomial terms as required, the

grouping or transformation of covariates, etc. When a satisfactory model

is found, the prediction of a new customer's response is just a matter of

inserting his covariates in the formula for the probability of bankruptcy.

3 Discriminant analysis { a backwards method

Consider, in the historical data set, the two k{dimensional populations of

covariate values constituted by the customers that went bankrupt and those

that did not. In the standard expositions of discriminant analysis, these two

populations are assumed to be multivariate normal with the same covariance

matrix � and di�erent mean vectors �1 (for those that went bankrupt) and

�0 (for those that did not).

In the present context, this is a \backwards" model, in the sense that the
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responses yi are regarded as �xed and the covariates as random. But it has

one advantage over the logistic regression model, which probably explains

why the method has become (though not why it still is) so very popular

in credit scoring, namely that it is computationally more simple. Whereas

the estimation in a logistic regression model requires numerical maximiza-

tion of the likelihood function, the estimates in a discriminant analysis model

can be computed explicitly. The maximum likelihood estimates of the two

mean vectors are simple co{ordinatwise averages of the covariate values of

the respective populations, and the maximum likelihood estimate of the co-

variance matrix (with standard correction for bias) is a weighted average of

the empirical covariance matrices of the two k{dimensional samples.

A relevant criticism of this model is that the assumptions are very restrictive

and hardly ever satis�ed in practice. In the applications that we have in mind,

many of the covariates are binary (e.g. gender ), and many others will have to

be derived from classi�cations in three or more unordered categories, which

means that they must enter the linear expressions as \dummies" (indicators

for group membership), which are again binary. This makes normality quite

unrealistic.

Even in a situation where all covariates are proper quantitative measures,

the natural normality assumption would usually be normality of the whole

population, not of the two subpopulations de�ned by the response. It appears

rather naive to assume that \bankrupters" and \non{bankrupters" are so

fundamentally di�erent species that one could | in principle and if one

had data enough | identify the two normal components in the marginal

distribution of the covariates, without observing the responses at all. It seems

much more realistic to assume that bankruptcy is a random event, in
uenced

by the covariates, but certainly not with such a \backwards" impact on the

distribution of the covariates.

Another drawback of the discriminant analysis model is that it does not give

an immediate answer to the original question concerning the probability of

bankruptcy for a new potential customer. It does, however, give a function

that can be used to discriminate between the two populations, namely the

proportion between the two (estimated) normal densities, or its logarithm.

Formally, the discriminant analysis model reduces the original problem to

the following, provided that the parameter estimates are accurate enough to

take the role of true parameter values. The set (x1; : : : ; xk) of covariates for

our new customer is known to be a random vector from a normal distribution
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with covariance matrix � and with a mean that is either �1 or �0. Which of

them is it? Or, more precisely, what is the probability that it is the one with

mean �1?

An assignment of a probability to this event requires a Bayesian formulation,

which will be explained below. But the problem of deciding (whatever that

means) which of the two populations the covariate set comes from is a more

fundamental statistical problem, which | as agreed on by all schools of

statistics, including the Bayesian | should be solved by consideration of

the likelihood ratio, the proportion between the two densities at the point

x = (x1; : : : ; xk). Intuitively, the idea is that if the two densities happen to

be approximately equal in the observed point x, then we cannot not say more

about the new customer than we could before x was observed; on the other

hand, if the density with a mean of �1 is, say, more than 20 times greater

than the density with a mean of �0, then we have a strong indication of a

bankruptcy; and vice versa.

Let '1 and '0 denote the densities for the normal distributions of the co-

variates for bankruptcies and non{bankruptcies, respectively. Then, by a

straightforward calculation, the logarithm to the proportion between the two

densities at x = (x1; : : : ; xk) is

log
'1(x)

'0(x)
=

�
x�

�1 + �0

2

�
0

��1(�1 � �0);

(where, by convention, x, �1 and �0 are regarded as n � 1 columns when

matrices are multiplied). Consequently, our decision of whether to accept or

reject the new customer should be based on this quantity or, equivalently, on

the linear function x0��1(�1��0) of the covariates. If this linear combination

exceeds some threshold value we should reject the loan application, otherwise

we should accept. The decision as to which threshold value to apply does

not follow from this, but as we have noticed before, this problem can be

solved through an examination of the hypothetical historical consequences of

decision rules based on di�erent threshold values.

One way of assigning a concrete probability to the event that the new cus-

tomer goes bankrupt is by assigning a Bayesian prior probability ptot to this

event. This probability should be interpreted as a \total" or unconditional

probability, as opposed to those discussed earlier which are conditional on the

new customer's covariates. An estimate of this probability ptot is diÆcult
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to obtain, because it should in principle be estimated as a (historical) fre-

quency of bankruptcies in the population of loan applicants, including those

that were rejected and for whom it does not even make sense to consider

the event \bankruptcy". Anyway, if we can �nd a reasonable value for ptot,

we have in principle speci�ed the total joint distribution of covariates and

response for the new potential customer. The distribution of the response

is given by ptot , and the conditional distribution of the covariates, given

the response, is multivariate normal, as speci�ed by the model and the pa-

rameters �, �1 and �0. A straightforward computation (an application of

Bayes' formula) gives the following relation between the conditional proba-

bility p = P (y = 1 j x1; : : : ; xk) of bankruptcy, given the covariates, and the

unconditional probability ptot of this event,

p

1� p
=

ptot
1� ptot

�
'1(x)

'0(x)
;

or
p

1� p
= exp

�
log

ptot
1� ptot

+

�
x�

�1 + �0

2

�
0

��1(�1 � �0)

�
;

or

logit(p) = logit(ptot) +

�
x�

�1 + �0

2

�
0

��1 (�1 � �0) :

This formula can be used for the computation of p when ptot is known, and

is useful if we want to assign a probability to the event that the new customer

goes bankrupt.

A second | and perhaps more interesting | consequence of this formula

is that the logistic regression model has an interpretation as a conditional

model in a \super model" based on the discriminant analysis model. By the

super model is meant the model considered above, when ptot is given the role

of an unknown parameter rather than a subjective prior probability. Hence,

the model states that any customer goes bankrupt with probability ptot, and

the conditional distribution of the covariates, given this event, is multivariate

normal as speci�ed by the discriminant analysis model. This is the descrip-

tion of the super model from the point of view of a stepwise observation

scheme where the responses yi are observed �rst in their marginal distribu-

tion, and then the covariates are observed in their conditional distribution,

given the responses. The above computations illustrate how it appears from

the point of view of a \forwards" observation scheme, where the covariates
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are observed �rst in their marginal distribution (which is a mixture of two

normal distributions), and thereafter the responses are observed in their con-

ditional distribution, given the covariates. The expression for logit(p) above

shows that the conditional model in the last step coincides with the logistic

regression model considered in section 2, with parameters

�0 = logit(ptot)�

�
�1 + �0

2

�
0

��1 (�1 � �0) ;

and

(�1; : : : ; �k) = ��1 (�1 � �0) :

This explains why the conclusions resulting from the logistic regression very

often can be reproduced with high accuracy by the corresponding discrimi-

nant analysis. Indeed, if the marginal distribution of the covariates contains

very little information about the parameters of interest (which essentially

means that the two normal components cannot be identi�ed), almost all the

information lies in the second step, which is the standard logistic regression

model. The interpretation of the linear expression

�1x1 + � � �+ �kxk = x0��1 (�1 � �0) ;

as the discriminating function on which the decisions should be based holds

for both models. Even the expression for the probability of bankruptcy, given

the covariates, is the same for the two models, only with a slightly di�erent

interpretation of ptot.

However, this is only an excuse for the discriminant analysis model, not a

recommendation of it. If normality holds, the discriminant analysis model

should be preferred (cf. Efron 1975). But normality is absurd in most of the

situations we have in mind, in particular normality of the two subpopulations

de�ned by the response, and it is easy to construct examples where things

go entirely wrong because the normality assumption does not hold. If one

simulates, for the case n = 1000 and k = 1, the x{values as independent

normal with mean 0 and a standard deviation of 10, and thereafter generates

the responses yi according to a logistic regression model with �0 = 0 and

�1 = 1, the �t of a logistic regression will give an estimate of �1 around

1� 0:2, whereas the discriminant analysis model will give an estimate close

to 0.4. Other convincing arguments in this direction can be found in Press

and Wilson (1978). For these reasons, we cannot recommend discriminant

analysis of credit scoring data in general.
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A �nal remark (in favour or against, the choice is yours) about discriminant

analysis is the following. As noticed by Fisher (1938, see also Anderson 1984),

the vector (�̂1; : : : ; �̂k) of estimated coeÆcients for the discriminating linear

function is proportional to the vector of estimated coeÆcients in an ordinary

least squares multiple regression of the binary response y on the covariates

(x1; : : : ; xk). This peculiar result implies that the set of decision rules result-

ing from the discriminant analysis coincides with the set of decision rules of

this \dummy" multiple regression. This may be of particular interest to SAS

users, because PROC GLM | as opposed to PROC DISCRIM | can gener-

ate dummies from factors or products of factors (\CLASS terms") in a model

formula. But as a statistical method, this regression appears rather naive,

and it is easy to imagine situations where this model will result in conclusions

that are more complicated than necessary. Think of a case where a single

factor on two levels is very dominating, in the sense that all bankruptcies

are on level 1 of that factor. Almost inevitably, this will result in signi�cant

interaction of that factor with all other factors of interest in the least squares

analysis. Whereas a logistic regression model can easily incorporate such a

\dominating" factor, acting additively with all other e�ects.

4 Neural networks { the black box method

The term \neural networks" covers a very large class of models and algo-

rithms. For more general expositions of neural network modelling from a

statistics point of view, we refer to Ripley (1994) and Sarle (1994). We shall

consider only a few of the simplest neural network models and discuss their

relation to the logistic regression model.

4.1 The neural network without hidden layers

To start with a triviality, a neural network with \no hidden layers" can be

described by the approximate functional relationship

yi � F (�0 + �1xi1 + � � �+ �kxik) ;

where the function F (the \activation function") is usually (and will in the

following be) taken as the inverse logit function F (x) = ex

1+ex
. In its most

primitive form, this is nothing but an approximate description of the way the
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responses yi depend on the covariates xi1; : : : ; xik. The relationship is usually

estimated (\trained") by ordinary least squares or by minimization of some

other simple measure of distance between the \targets" yi and the \outputs"

F (�0 + �1xi1 + � � �+ �kxik). The models ability to predict is then tested by

cross validation, i.e. by comparison of predicted and observed values in a

new data set, the \test set". Since no other methods for model veri�cation

are available, cross validation plays a much more important role in neural

networks than in ordinary statistical practice. Quite often, it is necessary to

split the data set randomly in two.

From a statistical point of view, it is natural to interpret the functional

relationship as a statistical model, for example| in the context of the present

paper | to think of the expression on the right hand side as the probability

of getting the value yi = 1 for a customer with covariates xi1; : : : ; xik, and,

accordingly, use maximum likelihood rather than least squares. With this

modi�cation we have, with all reservations concerning other interpretations

that are beyond our level of perception:

The neural network with no hidden layers coincides with the logistic regression

model.

4.2 The neural network with one hidden layer con-

sisting of a single neuron

This is the model speci�ed by

yi � F (�0 + �1F (�0 + �1xi1 + � � �+ �kxik)) :

Again, the function F (which occurs twice in quite di�erent contexts) is

assumed to be the inverse of the logit function. Other functions could be used

here, but since a standard assumption is that these functions are increasing

and bounded, it makes very little di�erence in the following discussion. And

again, we prefer to think of the right hand side as the probability of the

response 1.

The main di�erence between this model and the logistic regression model is

that the range of the right hand side is a proper subinterval of the unit in-

terval. For �1 > 0, the right hand side is an increasing function of the linear

combination �0+�1xi1+: : : �kxik. For large positive values of this linear com-

bination the value of the right hand side comes close to F (�0 + �1) < 1, for
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large negative values it comes close to F (�0) > 0. This behaviour represents

a well known modi�cation of the logistic regression model to situations where

some \background|randomness" implies that the response is not asymptot-

ically deterministic for large absolute values of the linear combination of

covariates. In the context of credit scoring it would mean that even the most

well behaved customer has probability at least p1 of going bankrupt, and

even the most unreliable customer has probability at least p0 of not going

bankrupt, where p1 and p0 are (small but) positive. Another simple modi-

�cation of the logistic regression model that takes this into account can be

constructed as follows. Imagine that \preliminary" responses y�i are gener-

ated by a standard logit{linear model. But the �nal responses are generated

from the preliminary responses by a mechanism that changes a 0 to a 1 with

probability p1, and changes a 1 to a 0 with probability p0. The expression

for the probability of bankruptcy in this model is easily seen to be

P (yi = 1 j xi1; : : : ; xik) = (1� p0)F (: : : ) + p1 (1� F (: : : )) ;

where : : : stands for the usual linear combination of the covariates. As

functions of this linear combination, these functions are similar in shape to

the functions that can occur on the right hand side of the neural network

model. But the neural network model in this case is certainly an alternative

which is worth considering.

However, it is not quite fair to use the term neural network for the model

with a single neuron in the hidden layer, because the whole idea of neural

networks is to build the model by recursive use of two operations, the for-

mation of linear combinations of \inputs" from the previous layer, and the

transformation by the \activation function" to produce the \output", serving

as \input" to the next layer. In this respect, the model with a single neuron

in the layer before the last one is a degenerate model.

Thus, the smallest nontrivial model which has all the characteristic features

of a neural network is

4.3 The neural network with one hidden layer con-

sisting of two neurons

This model can be written
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yi � F (�0 + �1F (�0 + �1xi1 + � � �+ �kxik)

+�2F (
0 + 
1xi1 + � � �+ 
kxik));

where, again, we assume that F is the inverse logit function and the right

hand side is interpreted as the probability of the event yi = 1.

The most remarkable feature of this model is, perhaps, its complexity. Even

in the case of a single covariate x, the 7{parameter family of functions of the

form

f(x) = F (�0 + �1F (�0 + �1x) + �2F (
0 + 
1x)) ;

includes | just as an example | functions that increase from the asymptotic

minimum at �1 to a global maximum, then decrease to a local minimum,

and �nally increase to the asymptotic value at +1. In the case with two

covariates things become even more complicated. The typical function of the

form

f(x1;x2) =

F (�0 + �1F (�0 + �1x1 + �2x2) + �2F (
0 + 
1x1 + 
2x2)) ;

has four di�erent asymptotic values for (x1; x2) escaping towards the horizon

in di�erent directions. It is not a triviality to discuss how the shape of

this function depends on its nine parameters, and it is almost impossible

to imagine what happens when two or more layers with several neurons are

allowed.

In conventional statistics, there is a very hesitative attitude to the use of

models as complicated as this. The reason for this is not so much the com-

putational diÆculties | they can be overcome | but the fact that the whole

purpose of a statistical analysis is to explain the data as the result of a pro-

cess involving two components, the systematic variation, represented by the

statistical model and its parameters, and the random variation, represented

by the actual outcome of the random model (in its most concrete form, the

error terms in a regression model). The impossibility of the drawing of a

sharp borderline between randomness and complexity | as most recently

emphasized by chaos theory, and more implicitly contained in the traditional
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concept of \over�t" | makes it not only desirable, but necessary, for the

statistician to avoid complexity as far as possible.

A simple illustrative example from more traditional statistics comes from

polynomial regression. If an ordinary, linear regression model yi = �0 +

�1xi + �i fails to give a satisfactory description of data, it may be because

there is some curvature that can not be catched by a linear function. A simple

way to include this is by quadratic regression, yi = �0 + �1xi + �2x
2
i + �i. If

this is not good enough, a third degree term can be added, and so on. For

every term of higher degree we add, the �t becomes better in the sense that

the square sum of the di�erences between observed and �tted values becomes

smaller. But uncritical continuation of this process will obviously result (most

extremely when degree n� 1 is reached) in a more and more perfect �t of a

function which becomes more and more useless for extrapolation. If one �ts

an unnecessarily complicated model to a \training set", its ability to predict

correctly in a \test set" will usually be poor. This is the kind of problems

we would expect to run into with the neural network models, in particular

those with several layers consisting of many neurons.

Of course, this is not a principal criticism of the neural network models, nor

of polynomial regression models of degree 10. What we are saying is just that

there are so many other more simple modi�cations that one can make of the

basic logistic regression model, that it is diÆcult to imagine situations where

we would end up with something as complicated as this. But the possibility

exists, of course, and in section 6 we shall try to �t a neural network model

with one hidden layer of two neurons, to see what comes out of it.

5 Time trends, censoring and interventions

Until now we have concentrated on predicting whether or not a customer goes

bankrupt within a certain time period. Historical data do not only provide

information on whether the customer payed the debt or not, but will often

include more detailed information about the repayment. Generally, regis-

trations of the date of repayment, the age of the loan, customers changing

�nancial ability, e.g. getting married or divorced or | in order to reduce a

potential loss | interventions, such as reduced rates for customers unable to

pay the full rate, are possible registrations.

The statistical method for dealing with this sort of more detailed informa-
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tion is known as event history analysis or single/multiple spell analysis, well

known in e.g. applied labour economics (Heckman and Singer (1985) and

Lancaster (1990)), and synonymous with survival analysis, extensively used

in biostatistics (Andersen et al. (1993)). In the present context the idea is

to describe the waiting time, T , from duedate until payment. This can be

in�nite and the customer is bankrupted, but as discussed in Section 1, it is

convenient to use the term bankruptcy if the customer fails to pay within a

time period of a given length, say T0. The hazard, �(t), for T plays a central

role in event history analysis. �(t) is de�ned as the conditional density for

T at t, given T > t, | that is, �(t)dt is the probability of payment within

an interval of length dt immediately after t given that the customer has not

payed at time t. The cumulative distribution function, F , for the waiting

time may be uniquely characterized by the hazard function

1� F (t) = P (T > t) = exp(�

Z t

0

�(u)du):

Notice that the term hazard is awkwardly used here for the \risk" of payment.

The in
uence of the covariates is frequently modelled as

�(t; x1; : : : ; xk) = �0(t) exp(�0 + �1x1 + � � �+ �kxk);

known as Cox's proportional hazards model (Cox (1972)). �0(t) is the com-

mon underlying hazard function for all customers. On a logarithmic scale the

hazard is modelled as a linear combination of the covariates. Assuming that

the hazard function is constant over time, say �0(t) � �, the model reduces

to the exponential regression model for waiting times.

The real advantage of using event history methods in the analysis of historical

credit data is that it is possible to include not only the information on when

(if ever within the time limit) the customer payed the loan but also time{

varying covariates and censoring of observations can be modelled. Right

censored data appear frequently. Waiting times for customers not paying

before T0 are censored observations, but also e.g. interventions from the

�nancial institution such as reducing the size of payment can be dealt with

as censored observations. Important time{varying covariates may be marital

and/or job status.

In Section 2 we discussed the logistic regression model for the probability

of going bankrupt, P(T > T0). Using the log({log) transformation instead

of the logit transformation for the probability of bankruptcy modelled as
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above the in
uence of the covariates is seen to be linear. The constant term

in the log({log) regression then re
ects the integrated underlying common

hazard for bankruptcy; �T0, in the model with constant hazards. However,

customers' payment behaviour can hardly be described by a constant hazards

model. Constant hazard may be appropriate over small time intervals, but

the hazard for payment may be expected to decrease with time. Piecewise

constant hazards can be handled by dividing the time period into disjoint

intervals de�ned by 0 < t1 < � � � < tm < T0. Then the probability of

bankruptcy can be written as a product of conditional probabilities

P (T > T0) = P (T > t1)P (T > t2 j T > t1) : : : P (T > T0 j T > tm);

where each factor on the right hand side is of the same form as P (T > T0)

above. Moreover, the in
uence of the covariates on the overall probability

of bankruptcy is additive on the log({log) scale, and the constant term is

a weighted sum of common underlying hazards. In this way event history

models and models with binary outcome are closely related as long as the

covariates are well de�ned from the start of the period of observation and

the in
uence of the covariates is assumed not to change with time.

A further advantage is that it is possible to introduce piecewise constant

coeÆcients, �'s. For instance, some customers could be in arrears with the

payment simply because of human mistakes or absentmindedness and will pay

immediately after becoming aware of the mistake. These people de�nitely

have charateristica di�erent from those being in real �nancial trouble, and

still not having payed after, say, three months. Analysis of the conditional

probabilities above, either by a logistic, a log({log) or a Cox's regression

model makes it possible successively to point out customers repaying in the

near future. With this kind of information, the �nancial institution will be

able to determine which of the customers it will be worth o�ering special

attention.

6 A case study

6.1 The data

In 1795 a �re broke out in Copenhagen and a quarter of the city burnt

down. The �re was followed by an acute need for credit to rebuild the lost
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homes, and this need occasioned in 1797 the establishment of the �rst Danish

mortgage credit institution, later to become a part of BRF-Kredit, the third

largest mortgage credit institution in Denmark.

For the past two centuries the Danish mortgage credit market has been con-

trolled and regulated through strict acts with the three latest large revisions

in 1970, 1980 and 1989. In 1970 the standard mortgage system was intro-

duced allowing the borrower to raise loans from a single institution based on

�rst and second mortgage lending. In 1980 a reform established the current

principle of �nancing up to 80% of a property's value through �rst mortgage

credit from one of the, at that point in time, four authorized �rst mortgage

credit institutions (FMCI). The remaining 20% must be �nanced through

other sources (e.g. banks, private resources, etc.). In 1989 authorization

of FMCIs was liberalized allowing establishment of new FMCIs including

foreign investors.

The main principle of �rst mortgage credit to private housing is as follows:

Up to 80% of the cash selling value of the property can be �nanced through

the FMCIs. The credit is typically established through 30 years �xed interest

rate annuity loans with quarterly settling periods. The capital for the loan

is raised by the credit institute through the issuing and selling of bonds with

a �xed integer interest rate around the actual market interest rate, and the

price of the bonds determine the e�ective interest rate of the annuity loan. If

the client wants to pay back the loan before it is end of the instalment, this

is done by buying the bonds at the size of the de facto price at the payback

time.

Two factors in
uence the size of the �rst mortgage relative to the sales value

of the property:

1. The bonds are negotiable on the open stock market and the price will

of course alternate with the market interest rate (e.g. the bond prices

increase when market interest decreases and vice versa). This means

that if the client wants to pay back his loan before the end of the

instalment (typically when selling the property) he may face increased

debt due to a decreased market interest rate (one can at a premium

rate take precaution against this situation when establishing the loan,

but as that will cost a premium rate, far from all make that guard).

2. As the FCMI-loans have a very long settling period, many houseowners

use the opportunity given by increasing houseprices to raise capital for
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consumer expenditures through constantly having FCMI loans on 80%

of the actual property sales value and still have some of the remaining

20% �nanced from banks or similar sources.

Thus if houseprices and/or market interest drops signi�cantly the quoted

value of the FCMI loan may become higher than the sales value of the prop-

erty!

The international economic boom in the beginning of the 1980s resulted in

a strong growth in house prices in Denmark. From 1982 to 1986 the aver-

age house prices increased by 83%. The boom combined with the above-

mentioned tradition of �nancing consumer expenditures through additional

FCMI loans resulted in an overheated economy. In June 1986 the conservative-

liberal government therefore introduced two law complexes to reduce the

speed of the economy. One complex consisted of increased taxes, rates and

dues and a compulsory saving, the other reduced the tax reduction of pri-

vate interest expenditures (like mortgage interest) from typically 70% to 48%.

Because of these initiatives house prices dropped within the next 18 months

with approximately 30%. In addition the internationally in
uenced decreas-

ing market interest was intensi�ed resulting in a decrease of market interest

from 19% in January 1983 to 10% in June 1986.

As a result a large portion of the Danish houses was mortgaged much higher

than the sales value of the property. This created two problems:

1. Quite a few house owners (especially new owners) could not a�ord their

mortgage expenses due to the e�ect on their private economy of the two

law complexes.

2. A large amount of house owners trying to sell their house experienced

that the value of the house was far below the quoted value of the total

mortgage credit.

Consequently, the housing market faced a boom in numbers of sales by order

of the court with high losses for the FMCIs as a result.

In 1990 BRF-Kredit introduced a program to reduce their loss on compulsory

sales. The clients (customers) of the institute could be divided into the

following 4 groups:
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Group 1: Customers repaying the loan prompt on schedule.

Group 2: Customers repaying the loan, but sometimes late of schedule.

Group 3: Customers not able to repay the loan unless they got some

respite and use of this respite to restructure their economy.

Group 4: Customers unable to repay the loan.

The potential losses on the mortgage loans did of course occur in group 3

and 4 and studies showed that the earlier these customers were identi�ed and

contacted to either establish respite (group 3) or compulsory sale (group 4)

the smaller (if any) the losses would be.

Part of the restructuring program consisted therefore in a study to build a

prediction model for immediate identi�cation of the members of group 3 and

4 among those not paying a given settling period due. The task consisted of

the following: \The �rst day after the quarter due date to identify group 3

and 4 members among those having not paid the instalment".

Due to the Danish rules of electronic registration of people and the rules

of FMCIs the loans were solely registrated with objective information like:

name, age and sex of the customer, size, age, interest, settling period and

past payment history of the loan, size, location, type and age of the property.

Part of this information form the base of the case study of this paper. We

have selected data from two settling periods to illustrate our conclusions.

The �rst data set consists of those loans not paid due in the 4'th settling

period 1989 (due day 31'st of December). The second consists accordingly of

the past due of the 3'rd settling period 1990 (due day 30'st of September).

The 1989 data are used to build the prediction models and the 1990 data are

used to test the prediction models. All data are made anonymous and only

part of the available information is brought into use. Loans with a past due

payment later than 6 months are considered as bankrupted.

In December 1989, 7941 private house loans were not paid due. Hereof 776

(9.7%) failed to pay within 6 months. The equivalent September 1990 data

consisted of 7699 not paid due out of which 1114 (14.5%) was not paid after

6 months. For the purpose of this paper we have selected the following

information about the loans:

Social, a factor on four levels de�ning whether the loan is guaranteed by

a single individual or a couple, two persons | males and/or females.
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Singles are grouped according to gender and couples are grouped ac-

cording to whether they do have same address or not.

Age, the age of the primary mortage holder. The age is registered in

years.

County, de�ning in which county the property is situated. The factor

has 16 levels.

Property, de�ning whether the property is a house or an appartment.

Mode, an indicator for whether the mode of payment has been changed

from automatic to manuel or not.

Debt, the total outstanding debt in BRF-Kredit.

Instalment, the size of the total instalment in BRF-Kredit the given

settling period.

Percent, de�ned as the percentage of the property's value �nanced through

FMCI's.

Respite, de�ning whether or not the customer did ask for respite before

the duedate.

Trade conditions, a time factor describing the market trend constructed

according to when the loan is raised: Loans raised before 1986, loans

raised from 1986 until end 1988 and loans raised after 1988.

Term before, an indicator showing whether the instalment immediately

before the present was payed duetime.

6.2 A logistic regression model

For the use in the logistic regression analysis it turned out to be convenient

to categorize the age of the mortage holder into four groups namely below 30

years, 30{40 years, 40{50 years and more than 50 years of age. Preliminary

marginal analyses showed that all covariates, except for the total instalments

(�2=0.84, df=1, p=36.8% ) and whether or not the customer did ask for

respite (�2=2.31, df=1, p=12.8% ), had signi�cant e�ect on whether the

customer went bankrupt or not. While the degree of the in
uence of the trade

factor (�2=8.49, df=2, p=1.4% ) and the total outstanding debt (�2=4.59,

df=1, p=3.2% ) were modest, the in
uence of the remaining factors were

highly signi�cant. The above numbers in brackets are the calculated {2log

likelihood ratio test statistic, the degrees of freedom in the corresponding

�
2 {distribution and the resulting test probability for the hypothesis of no

in
uence.
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The multiple logistic regression analysis was performed by a forward/backward

procedure. For a start, two factor interactions were successively added to

the model with all factors included as main e�ects. Only the interactions

between age and the social factor respectively age and the type of property

were signi�cant. After adding these two interactions to the model, succesive

elimination of covariates revealed that trade conditions not a�ects the prob-

ability of bankruptcy (�2=0.013, df=1, p=90.8%). Furthermore, Percent

(�2=0.822, df=1, p=36.5% ), Debt (�2=0.018, df=1, p=89.3% ) and Instal-

ment (�2=2.10, df=1, p=14.8% ) were non{signi�cant and removed from the

model. The remaining factors were all highly signi�cant (p<0.0005) and the

�nal model became

(1) logit (p) = �0 + �age + �social + �property + �mode + �county+

�respite + �term before + �age�property + �age�social:

The adequacy of the above model was supported by the Hosmer and Lemeshow

goodness{of{�t statistic. The test statistic was 12.8, which evaluated in a

�
2(8) {distribution corresponds to p=0.12. Some estimated parameters from

the above model are seen in table 1. Due to overparametrization the param-

eters are relative to a reference category. The parametrizations are indicated

in the subscripts to the �̂ 's , e.g. �̂mode=changed is the estimated e�ect on

the logit transformed probability of bankruptcy of changing the mode of

payment from automatic to manuel compared to not changing the mode of

payment. The interpretation is that changing the mode of payment increased

the probability of bankruptcy. Similary, those having asked for respite had

a higher probability of bankruptcy, while having payed late the instalment

before decreased (!) the probability of getting bankrupted.

The estimates of the factor county and the interaction terms are crowded

out. The estimates of the county parameters did re
ect that the county ef-

TABLE 1

Selected estimates, standard errors (SE), odds ratios and corresponding 95% con�dence limits.

Estimate SE Odds Ratio 95% Con�dence limits

�̂mode=changed 0.553 0.085 ÔRchanged=not changed = 1.74 (1.46 , 2.05)

�̂respite=no -0.204 0.093 ÔRnot asked=asked = 0.816 (0.680 , 0.978)

�̂termbefore=late payment -0.746 0.091 ÔRlate=duetime = 0.474 (0.397 , 0.567)
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TABLE 2

Classi�cation results using the logistic regression model (1)

Historical data

Correctly predicted as: Incorrectly predicted as: Percentages

Probability Non- Non- False False

level Bankruptcy bankruptcy Bankruptcy bankruptcy Correct positive negative

0.10 534 3181 2447 206 58.3 82.1 6.1

0.20 198 5022 606 542 82.0 75.4 9.7

0.30 80 5503 125 660 87.7 61.0 10.7

Test data

Correctly predicted as: Incorrectly predicted as: Percentages

Probability Non- Non- False False

level Bankruptcy bankruptcy Bankruptcy bankruptcy Correct positive negative

0.10 510 2986 2117 448 57.7 80.6 13.1

0.20 192 4602 501 766 79.1 72.3 14.3

0.30 57 4999 104 901 83.4 64.6 15.3

fect can be due to geographical economic variations, probably variations in

the unemployment rate. Further, some main tendencies were that couples

with di�erent addresses had an increased probability of going bankrupt for

all age groups except for the oldest customers. Younger customers in appart-

ments, between 30 and 40 years of age, had higher risk of going bankrupt

than older customers.

For classi�cation and validation purposes the predicted probabilities of bank-

ruptcy were calculated, both for customers in the historical data set and

for customers in the test data set. Based on the predicted probabilities,

customers may be classi�ed as bankrupts or non-bankrupts, according to

whether the predicted probability exceeds a given level or not. In table 2

the classi�cation results are given for each of the probability levels 0.10, 0.20

and 0.30. The results obtained from the test data set are almost similar to

the results for the historical data set, the percentage of correct classi�cations

being only a few percent lower than for the historical data set.

6.3 Comparison of methods

Suppose we have a method for identi�cation of bankrupters which, on the

basis of experience obtained from the training set, suggests some way of scor-

ing the costumers' risks of going bankrupt as a function of their covariates.
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Figure 1-4. Illustrations to section 6.3.

26



This may be in terms of an estimated probability of bankruptcy, or the logit

of this. A simple way of illustrating the method's ability to pick out the

bankrupters before the non{bankrupters is by a \performance plot" which,

for any percentage P between 0 and 100 shows how many of the highest

scored P % that actually went bankrupt. This is just a way of displaying

the whole continuum of tables of the form given in table 2 for the selected

score threshold values 0.10, 0.20 and 0.30. However, for cosmetic reason we

use only the values P =2%, 4% , . . . , 98%, 100%. Notice that this way of

evaluating a method depends only on the ordering of the customers by scores.

For example, the performance plot for a discriminant analysis model is inde-

pendent of the prior probability occurring in the formula for the probability

of bankruptcy.

Figure 1a and 1b show the performance plots for the training set and the

test set, respectively, for the logistic regression model (1) described in section

6.2. Just to make sure that the de�nition is clear, the fact that the point

(35,20) is (almost) on the broken line means that among the 35% highest

scored customers, 20% actually went bankrupt.

What is really interesting here is, of course, the plot for the test set (�gure

1b), since a high predictive power in the training set may be due to over�t.

As in section 6.2, the scores for the test set are computed with parameters

estimated from the training set.

We have drawn the plot for this model as a broken line. For the other models

considered, only the breakpoints will be marked, with the broken line for the

present model overlayed as a sort of common baseline.

Three other models were considered.

(2) A logistic regression model with the same factors as in (1), but with

omission of the two interaction terms. These interactions were strongly,

but not astronomically signi�cant (p=0.004 for age�social, p=0.0003 for

age�property), and it is of some interest to see how sensitive the perfor-

mance is to this kind of \oversimpli�cation". For the training set (�gure 2a),

the simpli�ed model seems to perform worse than the model with interac-

tions, but for the test set (�gure 2b) the di�erence is less pronounced. The

reason may be that the estimation error for the many interaction parameters

| most of which are probably insigni�cant, in some sense | makes the pro-

cedure based on the model without interactions more stable. This supports

the idea that over�t is a serious error source in this kind of problems. Though
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the conclusion is not so clear in this case, the general recommendation should

certainly be to make the model as simple as possible, by removal of all terms

that are not unambiguously signi�cant.

(3) An ordinary discriminant analysis of the factor dummies occuring in

model (1) gave the results shown by �gure 3a and 3b. For the training set, this

shows almost the same performance as the corresponding logistic regression.

For the test set there are some small di�erences, but they do not point

uniquely in any direction. Hence, in spite of the model assumptions (which

are really absurd here), the discriminant analysis performs well in this case.

However, since there is no obvious way of anticipating this phenomenon other

than performing the logistic regression, we cannot recommend the method

in general (cf. section 3).

(4) A neural network model with one hidden layer consisting of two neu-

rons was �tted, with both neurons having the same linear structure as the

logistic regression model (1). The �t was diÆcult to obtain, because the

log{likelihood is not too well behaved. With Fisher's scoring method, the

parameters had a tendency to dissappear towards in�nity, probably because

there are many \boundary" models that �t well. By suitable adjustment of

the rate of divergence, di�erent kinds of models (including logistic regression

models, and models describing the probability by step functions of linear

combinations of the covariates) can come up as as limiting models. For this

reason, we worked with a weakly penalized likelihood. In Bayesian terms, we

took a rather 
at normal distribution as the prior and computed the max-

imum of the posterior density instead of the maximum for the likelihood.

Moreover, it was necessary to start the algorithm with initial values obtained

by a more primitive search by a controlled random walk. This was tryed sev-

eral times, and the result presented here is the one that gave the highest

(unpenalized) likelihood. The model has 38+38+3=79 parameters, and the

gain in likelihood over the logistic regression model (1) with 38 parameters

was 136.5, which (on 41 degrees of freedom) corresponds to a formal p{value

of the order of magnitude 10�12. Hence, there is indication of a strongly

signi�cant improvement over the logistic model, and this is indeed supported

by �gure 4a. But �gure 4b strongly suggests that this is an artefact due to

over�t. For the test set, the neural network model performs worse than any

other model we have considered.
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6.4 Event history analysis

Time in days since due date
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Figure 5. Empirical waiting time probability for customers having asked for respite and

customers not having asked for respite.

As described in Section 5 time trends may be studied by analysis of data

sets originating from partitioning the time axis in smaller intervals and suc-

cessively conditioning with the event that the given customer has still not

payed the instalment. The non-parametric maximum likelihood estimator for

the probability that the waiting time from duedate until payment exceeds

t, T > t, known as the Kaplan{Meier estimator, is seen in �gure 5. Here

the Kaplan{Meier estimator is calculated after strati�cation with respect to

whether or not the customer did ask for respite before duedate.

From �gure 5 it is seen that only a few of those having asked for respite pay

in the weeks just after duedate whereas several of those not having asked

for respite pay within a few weeks. Contrary, those having asked for respite

pay later. If we only consider the part of the customers who still have not
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payed after 30 days from duedate, the probability of bankruptcy still depends

signi�cantly on whether there has been asked for respite or not. However,

when modelling the above conditional probability of bankruptcy by the lo-

gistic regression model (1) the estimated e�ect becomes larger and the sign

changes. The estimated parameter is �̂respite=no = 0.406 with corresponding

ÔRnot asked=asked = 1.50 (1.24, 1.81). So, here we have an example of a time

dependent e�ect of a covariate. The implication for the �nancial institution

is that customers not having asked for respite and not having payed after

30 days from duedate are worth paying special attention, even though the

overall e�ect was an increased risk of bankruptcy for those having asked for

respite.

7 Conclusion

This paper has examined three of the most popular methods for credit scor-

ing: logistic regression, discriminant analysis and neural networks. The paper

discusses those applications where the given credit evaluation can be viewed

as a sample from a population, of which the observations have characteris-

tics known to the credit association through historical data around credit

behaviour. The credit scoring can be either for the evaluation of new appli-

cations or the evaluation of existing loans.

Though many papers (e.g. Rosenberg and Gleit (1994), Hand and Henley

(1997)) have presented surveys of methods for automatic credit scoring, we

have missed a systematic evaluation of which methods that from a strict

mathematical view lead to the best basis for decision. In the present paper

we have examined the principles and assumptions behind the three methods

and their mathematical and statistical implications regarding simplicity, in-

terpretation of explaining functions and stability of prediction. The result

is as expected (see also Wiginton (1980), Press and Wilson (1978), Hand

and Henley (1997), Lucas (2001)) that logistic regression demonstrates best

performance in all three areas.

The paper additionally discusses the opportunities in censoring and inter-

ventions and the use of time{varying coeÆcients for successive evaluation

of loans (or customers) in arrears with payment. The bene�t of using time{

varying coeÆcients can improve the decision base signi�cantly as exempli�ed

in the illustrating case from BRF-Kredit where the coeÆcient of the covariate
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respite changes sign when time passes 30 days.

In summary we conclude that regarding credit scoring logistic regression

is superior to discriminant analysis and neural networks though the latter

two methods in given applications may show performance matching logistic

regression.

Regarding neural networks the analysis shows that the models, even in simple

versions, contain very complex prediction functions. As a consequence of this

these models have a build{in tendency to over�t, which makes it necessary,

in practice, to split the data set in a training set and a test set.
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