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Preface -IV-

PREFACE,

One of the most insufficient tools of classical probability
theory is the definition of conditional distributions. It
is well known, that the almost everywhere-definition »
reflects only half of the truth, as the specific choice of
conditional distributions in concrete situations does not
follow from the definition, but always from our common sense.

Within the theory of Radon measures, a more concrete definition,
based on a wellknown idea of "differentiation ™ , can be given.
This definition, its consequences, and some applications, will

be discussed in the following. I think the exposition is
sufficiently complete as concerns existence theorems, special
properties and connections to the classical theory, to constitute
a realis’ic slternative to the classical approach,

The reader is essumed to have a general mathematical background.
In acddition, some knowledge of the theory of Zadon measures is
necessary; however, knowledge of abstract measure theory
together with a short look into the annendix (vage 333) will
suffice, at least to begin with.

1 am most grateful to students and teachers of the Institute
of lathematical Statistics, University of Copenhagen, who
made this work vpossible. In psrticular, thanks zre due to
those students who in 1971-72 had the doubtful pleasure of
being precented to the earlier versions of the definition.
¥inally, I should like to thank my former teacher and vresent
colleague Hans Brons; without his inspiring influence I would
hardly have come to wonder about these problems.

Kegbenhavn 1973 _ Tue Tjur
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CHAPTER I : INTRODUCTION

" 1. FOUNDATIONS OF PROBABILITY.

It is well known, that there is a close analogy between concepts

like

Number of elements (sum)

interval length (integral)

area ‘ (double integral)
volume (triple integral)
mass

heat

electric charge

probability (statistical expectation).

In common, they have the property of attaching numbers to

sets (functions), in such a way that disjoint union of the

sets (addition of the functions) corresponds to addition of

the numbers.

Some of these analogies have been known for quite a long time.
For example, the analogy between sums and integrals was ob-
viously one of the main ideas behind the definition of the
integral, thus going about 300 years back. The analogy between

number of elements and probability is even a little older, being
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a necessary part of the first definitions of probability.

The later development of measure theory, initiated by Henri

Lebesgue in the beginning of this century, made it possible
to state in a more precise manner what the common feature of

these concepts is.

The idea of counting the elements in a set (number of elements)
is, in a sense, the prototype, and the other concepts of the

list are generalizations,

Among the generalizations, only the concept of probability
demands a measure theory, which is essentially more abstract
than that of counting measure, Lebesgue measure, and measures
given by densities with respect to counting measure or Lebesgue
measure. FProbability occurs on sets of many different struc-
tures. Certain operations, like the construction of product

measures, construction of projective limits (by the consistency

theorem), construction of transformed measures and conditioning

(or decomposition), which have a fundamental meaning in proba-
bility theory, require a measure theoretic framework, in which
counting measure, Lebesgue measure etc. are special cases of

the same thing.

Lebesgue’s theory was soon generalized (Maurice Fréchet, (1915))
to a theory of measures on arbitrary sets, equipped with

o-algebras of subsets. This theory made it possible to define
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the concepts of probability on solid, mathematical grounds.
Kolmogorov (1933) gave a description of this branch of mathe-
matics; his exposition has constituted the foundations of

probability since then.

Unfortunately, some later discovered difficulties in probability
theory seem to trace directly back to Fréchet’'s choice of the

o- continuity as continuity axiom (or localization axiom, see
Tue Tjur(1972). One of the more serious problems is the

following:

In the theory of stochastic processes, probability measures
on spaces of the form XT are studied. Here, X denotes the
state space (usually R or ]Rn), and T denotes the time scale
(usually an interval on R or Z ). TFrom intuitive conside-
rations, it seems plausible that a probability measure on
such a space should be determined from its finite dimensional
marginal distributions (i.e. the distributions describing
the joint stochastical variation of the states at a finite
number of time points). This is actually the case for X = R,
if the prescribed finite dimensional distributions satisfy
the natural consistency conditions (Kolmogorov’s consistency
theorem). The probability measures on & (= &Y ) are defined
on the cylinder o—algebra, the  o- algebra spanned by the

o - algebras corresponding to the finite dimensional distri-

butions. Two difficultiesarise in connection with this theorem:

Firstly, the theorem is not valid in its natural abstract ”
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form, i.e. when X is an arbitrary set with a o-algebra. As
proved by Sparre Andersen and Jessen (1948) there exists a
consistent family which does not correspond to a probability
measure on XT . The validity of Kolmogorov’s consistency
theorem depends on assumptions, which can not be described
properly in terms of sebts with o-algebras and measurability.
Many special versions of the theorem exist, but they have in
common the introduction of assumptions, which are essentially
of topological character (this was noticed by Halmos 6950)1

In all cases, the proof contains a typical compactness argument.

Secondly, the probability measures constructed by the theorem
(when it is valid, for X = TR, say) are not immediately appli-
cable as models for probabilistic phenomena (except under

the .additicnal assumption, that T be denumerable). Any set

in the cylinder o-algebra can be described in terms of a de-
numerable number of »coordinates Xy - Thus, events like
{xts 2 for all t} or‘ {the sample function is continuous}
are automatically excluded. Extension to a bigger o-algebra
can usually not be done in any natural way, because many of
the interesting events have inner measure O and outer measure
1. This problem is usually solved in the following way:

Let To be a dense, denumerable subset of T. The consistency
theorem produces a probability measure on XTo . This probabi-
lity measure is transformed by a retraction

To

j: X - X7 (defined almost everywhere)
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into a new probability measure, defined on the o-algebra

=14 in the cylinder o-alg. on X.0} .

{a]s
The choice of j (and, thereby, the choice of the new oualgebra)
must be carried out in a more or less arbitrary manner, from
suitable continuity criterions. If the To—samplefunction
is extendable to a continuous function on T with probability 1,
it seems natural to define J as the extension-by-continuity-
imbedding . If the To-sample function (as is often the case)
has right and left limits at each point of the timescale, then
it seems natural to define J as the extension by right or
left continuity. General criterions may be introcduced in
oréer to make the sample functions of the new processas conti-
nuous as possible (Doob’s separability concept). But a unique,
reasonable choice of j is usually not possible. Consequently,
one has to specify the models by introducing assumptions,
which have no empirical meaning (like right continuity of

the sample functions).

Also the basic definition of a probability field, as a set

with a ¢-algebra and a normalized, o-additive set function,

has its weak points: The concept of a o-algebra has no re-
lation to the situations, we pretend to describe in probability
theory. The assumption of o-continuity has (as explicitely
noticed by XKolmogorov) no empirical meaning. It is no more
than an ad hoc assumption, introduced in order to ensure the

validity of Lebesgue’s results in the abstract case.
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The difficulties in the theory of stochastic processes indicate,
that the choice of o-continuity as continuity axiom may be too
superficial. For a more detailed discussion of these matters,

see Tue Tjur (1972).

A detailed study of the proef of the complete additivity (or
o-additivity) of the Lebesgue measure shows, that the crucial
step is a compactness argument (though this point seems to
have played a minor role in Lebesgue’s mind; I have not been
able to find the compactness argument in the thesis from 19C2.
In the extended exposition from 1904, the argument is hidden
in a lemma (ascribed to Borel) on page 104-105). One might
hope, then, that simple assumptions of topological character
would ensure the validity of Lebesgues results, thus removing
the need of o-continuity as an assumption. This idea leads

immediately to the theory of Radon measures., In the definition

of a Radon measure, the o-continuity condition is replaced by

a regularity condition; stating that any integrable set can be

approached (in measure) from the inside by compact sets. As
proved by Radon (191%) (Riesz (1909)), these measures can be de-

scribed as linear functionals on a space of continuous functions.

A Radon measure on a locally compact space induces an *abstract
measure (i.e. regularity implies o=-continuity). For locally

compact spaces with a denumerable base for the topology, the

converse is also true (o-continuity implies regularity). This
means, that the difference between the two measure concepts is

a purely formal matter, as long as we are only interested in
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spaces like 2, R and R" ; which we are most of the time,

in fact '. For this and for other reasons, the theory of Radon
measures has never been widely accepted as an alternative to
abstract measure theory. In functional analysis, Radon measures
are often considered, because of their beautiful linear repre-
sentation, which is not shared by the abstract measures. But

in elementary mathematical analysis, abstréct measures are

used., A wellknown (and outstanding) exception is the integration

theory of the Bourbaki Series, based exclusively on Radon measures.

In the theory of probability, Radon measures are seldom used.
The concept is known among probabilists, but Radon measures
are usually regarded as a special sort of very nice abstract
measures on special spaces, and as a tool for proving Kolmo-
gorov’s consistency theorem in special cases. Only few excep-

tions are known to me:

Laurent Schwartz (1958) , in connection with a discussion of

the Wiener process, has given a very short introduction to
the most basic concepts in probability theory, based on the

theory of Radon measures.

Edward Nelson (1959) has noticed, that the complicated and

unnatural constructions of stochastic processes can be avoided,
if Radon measures are applied. The state space must be compact,
i.e. one has to compactify IR, R etc., but this is a minor

difficulty in view of the simplicity obtained: Kolmogorov’s
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consistency theorem is wvalid, and the models constructed are

applicable without any sort of modification. This result

is still widely unknown (or, at least: widely unused), probably
because nobody has ever written a book about stochastic processes,
based exclusively on the theory of Radon measures. In fact,
nobody has bothered much about the evolution of a unified

theory of stochastic processes, since Doob wrote his book in

1953.

Hans Brens (1967) introduced, in a course given at University
of Copenhagen 1967-68, the Radon measures in the foundations
of mathematical statistics. One reason for this was the need
of a more natural formulation of the basic statistical models,
in particular those given by invariance properties. The
global version of the definition of conditional distributions,
as discussed here, was given (the definition by'the adjoint-
ness equation (see theorem 23.1) and the definition by the

decomposition criterion (theorem‘23.3) ).

Tue Tjur (1972). In the monograph Tue Tjur (1972), I have
given a short introduction to probability, based on the theory
of Radon measures on compact spaces. The assumption about
compactness is not restrictive -though rather unsatisfactory-
because the spaces considered may always be compactified.
Almost all the definitions and results of the paper are known
beforehand, and the work has mainly consisted in the trans-
lation of known results from probability theory to the language

of Radon measure theory. The aim has not been to prove new
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results, but to show, that the theory of Radon measures,
without being any more complicated than the abstract measure
theory, provides a theory of probability, whiéh is more natural
and more efficient than the classical theory. Tet me list

some of the advantages, one obtains:

(1) The definition of a measure is based on the topology;
o-algebras come in as a secondary tool (it is a matter
of taste, whether or not this should be called an advantage.
I think it should, because I find a topology a much more

fundamental structure than a o-algebra).
(2) The concept of weak convergence avises in a natural way.

(3) Kolmogorov’s consistency theorem is valid, and the models

so constructed are immediately applicable.

(4#) The relevant concept of measurability (see the appendix)
solves many (if not all) measurability problems in

the theory of stochastic processes.

(5) Under certain (in practice, very unrestrictive) regularity
conditions, the concept of a conditional distribution

can be given a concrete, pointwise meaning.

Not all these postulates are demonstrated in Tue Tjur (1972).
Only the postulates demonstrated elsewhere are so, in fact.

(1) and (2) are certainly true, also in the locally compact
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case. (3) is true, but it remains to give a careful description
of what happens, if the state space is locally compact,

not compact. How does the choice of compactification affect
the model ? The compactificétion—technique is not immediate-
ly acceptable, because it introduces this arbitrary factor

in the model (though seemingly *less arbitrary * than the
choice of version in the classical theory). It may be conveni-
ent to introduce measures on completely regular spaces, in
order to solve this problem. The compactification-technique

is no more than a technigue. It may be acceptable as a tool

in the theoretical part of the framework, but as soon as
special spaces (like IR ) are considered, the theory must be

extended to the locally compact case, abt least.

The postulate (4) is no more than a good guess, based on examples.
Results like the measurability of *stopping rules * (see

Tue Tjur (1972), page 149), indicate the power of Bourbaki’s
measurability concept. See also theoreﬁ 20, 21 and 22 in the
appendix (here). It is a characteristic property of the

abstract theory, that seemingly basic results like theorem 2C turn
out to be wrong, unless new and surprisingly complicated

conditions are imposed.

The postulate (5) will, of course, be discussed here. The defi-
nition of conditional distributions is the only new method in
Tue Tjur (1972). Though the idea of defining conditional di-
stributions by a differentiation procedure is certainly not

new, it has always been regarded as a purely heuristic method,



Section 1 -11-

incompatible with the abstract theory (see e.g. Feller, vol II,

ed.1 page 157 or ed.2 page 160, or Breiman, page 68). In

o

section 6, I shall comment on a single attempt (the only
attempt, as far as I know) to define conditional distributions

by »differentiation ” (Seren Johansen (19€7))

Obviously, the method is incompatible with the classical theory,
1

ogical considerations. But in the

4]

¢

since it involves topo
framework of Radon measures, the method works quite well, as

we shall see.
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2. NOTATION.

All spaces X,Y, ... are assumed to be locally compact and

o-compact, if nothing else ié stated (for the definition of

c=c6mpactness, see the appendix). By a measure we always

mean a Radon measure, and integration, measurability etc. are

as defined in the appendix.

Measurability. The relevant concept of measurability is defined

in the appendix. Notice, that the definition is very different
from the usual definitions known from abstract measure theory.
It is interesting, however, that for small » spaces (like

R, bl etc.) the definitions almost coincide (see Tue Tjur

(1972), page 71).

Erackets [ ] , indexed by a variable, indicate that the
expression in the bracketsshould be considered a function of

this variable. For example, we write
[ g(x,y) ]X

for the mapping, which, for fixed y, takes x into g(x,y).

Formally, the use of brackets is defined by the equation

£o= [0 ],
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The integral sign & is only applied in case of Lebesgue

measure. The notation

&f(X) A (dx)

is inexpedient, the symbol dx having no meaning in the ab-
stract case. The only good reason for keeping this notation
in use 1is the »variable specifier mechanism *, built into
it. The use of brackets, as explained above, removes this

motivation. We write
M f or ,u.[f(x)] «

for the integral of f with respect to lu .

Example: (,A.GV)f (u ® v)[£(x,5)] (x,3)

H [v [f(x,y)]y]x .

Stochastic_variables. This concept will play the role of

a pure notational convention, similar to the classical con-

cept of a variable. The formal definition of a stochastic
variable as a mapping is not convenient, the theory being for-
mulated in terms of transformations between probability fields,
rather than in terms of a (classical) background *» probability
field. The use of a symbol x as a stochastic variable is declared

by specifications like
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for the distribution of x is convenient. For example,
L& = L) = w(p) .
Also the wellknown notation

Lix] tx) =y

O
~—

for the conditional distribution of X, given t(x) = yo , may

be convenient.

Some special symbols.

i= is used for definitions. For example,
¥y := f(x) means: Let vy be defined

as y = f(x)

1 denotes either the indicatorfunction
of the set A (i.e. 1A(X> = 1 for
xeA, O for x¢& A ), or the

identity WA:A-é A .

See also the more complete list of symbols introduced in the

\

text (page 363).
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denote the conditional distribution of x, given x e A
(here, Tao M denotes the measure given by the density 1A
with respect to } 3 see the appendix). It seéms natural to
define the conditional distribution of x, given t(x) = y, as

B

-1
the limit of the distributions M (vB > 0), when B

tends to y, in some sense.

B

-1
For simplicity, we write /AB instead of }Lt in the

following.
We assume, that the point y belongs to the support of v .
If this is not the case, we can certainly not hope to be

able to approximate ® y by a set of positive measure.

For the precise definition of the limit lim FB , we shall

need the concept of a net.

Nets. DBy an upwards directed set, we mean a set D, equipped

with a reflexive and transitive relation < (a preordering),
such that (D, € ) is upwards directed:

A d; ,d, €D FJ deD: d¢d and dy<d .

A D-net, or a generalized sequence, indexed by D, on an arbitrary

topological space Z, is a mapping

d = Z4

D = 2Z
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(or, equivalently, a family {zd§d e D) of points in Z). We

write

~~

Taking as (D, < ) the set W of natural numbers, equipped

< R N | 3 3 e ~ 1 - & ~ .y 7 -
with its usual ordering, we simply get a sequence (z_
n

this explains the name ’generalized sequence .,

w

of a net is defined exactly as for seqguences:
The net (z./d & D) is sald to be convergent towards =z € Z,
if, W of z, there exists a d_ € D,
such that
d>d = z, € W .
0 d
We write
z = 1lim z,
A a
a’)

. A P . . N R
(the point z is uniquely determined, as soon as the space 2

. - - , Ty en £33
is assumed to be Hausdorff).

For the definition of the conditional distribution, it seems

(D

natural to construct the net as follows: Let (D, < ) denote

the set of (say) compact neighbourhoods of y, ordered by inverse

]

X

inciu

and consider the net (u”| Be (D,2) ).

0]
o
O
s}
-
[+4]
t
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We might then define the conditional distribution as the limit

(in the weak topology) of this net, in case it exists.

There is, however, a slightly more restrictive definition,
which is easier to work with, because it ensures continuity
of the conditional distribution as a function of y. Define

the net as follows:

Let D denote the set of pairs (V,B), consisting of an open

neighbourhood V of y and an open set Bc V with vB>0 .

The relation < 1is defined as inverse inclusion with respect

to v,

i.e. we write
(VysBp) < (Vp,By)

if and only if

Obviously, < becomes a preordering. In order to prove that
(D, €) is upwards directed, let (Vq,Bq) and (VQ,B2) be
elements of D . Then, (vﬁnvg,vqnva) is also an element
of D, dominating the two given elements (notice, that we
have used the assumption ¥y € supp v ; the definition of

D requires V(anvz) > 0 ). Hence,

Bl (v,B) e (D,€) )

%

is a net on M (X).
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Definition: If the limit

B

/L-"’ = lim M

(V,B)} @

exists and belongs to P(x), it is called the conditional

distribution of x & (X,}l), given t(x) =7y .

The idea behind the (rather complicated) construction of the
net is not hard to understand: We want to let B be a small
set, close to y, but possibly not containing y. Unfortunately,
the sets E can not be ordered directly with respect to this
closeness-property. But the neighbourhoods of y can, in a
sense, be ordered with respect to closeness to ¥ » (namely,
by inverse inclusion). ILetting V tend toy in this sense,
and letting B be a freely varying subset of V, we obtain

2 kind of convergence of B towards y 7.

Nets of the type (zBﬁ'B-é y). The directed set (D, <), as
defined above, is an important tool in the following. The
nets considered will_always be of the form (zB|(V,B) e (D,g) ),
i.e. the point zp = Z(V B) depends on B only {and not on V).

3
For simplicity, we write "B - y » instead of »(V,B) o 7.
Tn order to indicate, that the measure Vv is the measure behind
the definition of the net, we may write "E- 7, vB>0" .

The net will be written simply as (zBiB-9 7).
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Defective conditional distribution. The requirement, that

the 1limit measure 1l1lim ﬁ, in the definition should be a
B-):;f

probability measure, is not empty. It is wellknown, that

probability mass may disappear during a passage to the limit
(unless X is compact). If the net (;A’l B— y) converges ,

but not towards a probability measure, we talk about a defective

conditional distribution. A defective conditional distribution

has total mass < 1 (most often, iI/Ly{i = 0 ).
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4, JUSTIFICATICN OF THE DEFINITION.

Most of the situations, considered in probability theory,

fall within one of the following main classifications:

The discrete case: Probability distributions, given by their

densities with respect to counting measure on some set

(usually % or 2% ).

The continuous case: Probability distributions, given by

their densities with respect to Lebesgue measure on IR
or R , Oor -possibly- with respect to some area measure

on a differentiable manifold.

Stochastic processes: Probability distributions, describing

an infinite system of consistently connected probability

fields of discrete or continuous type.

It is obvious, that the definition of conditional distribution
given here (page 20) is equivalent to the usual, elementary
definition in the discrete case. As we shall see, the defini-
tion is also applicable to the two other cases, in the sense
that the conditional distributions are, in most cases, every-
where (or, at least: almost everywhere) defined, and they

have the properties one would expect conditional distributions

tc have.

Existence of the conditional distributions in most cases of
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interest does not folleow from any results of a general, mathe-
matical character, Only strong regularity conditions, like
differentiability of the transformation t, cqnfinuity of

the densities defining M and v etc., ensure the existence.
But such regularity assumption are usually satisfied. It is
not hard to construct examples, where the conditional distri-
bution is nowhere defined, but these examples seem to be of

no interest to us (see section 30, page 251).

The advantage of the present definition, as compared to the

definition given in the classical theory, is its local
character, making it possible to talk about the conditional
distribution of x, given a certain, fixed value y of t(x).

In the classical theory, no topological assumptions are included,
and therefore the local definition is meaningless. Iﬁstead,

one has to define the conditional distribution in terms of its
global properties. This involves, among other things, that

the conditional distributions are only determined up to
equivalence (i.e., they can be changed on a null set), which

makes conditioning upon a fixed value of y meaningless.

Conditional expectation.Discussing various dependence/inde-
pendence-structures (conditional independence, the Markov
property, asymptotic independence etc.), the concept of con-
ditioning plays a fundamental role, as a tool for description
of the (unconditioned) stochastic  vdriation. In such cases,
it would be unnatural to make assumptions about existence of

‘the conditional distributions, which we happen to mention in
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the discussion. But in such cases, conditional expectations

(including conditional probabilities, defined as conditional ex-

pectations of the indicatorfunctions) can be used. Conditional
- expectations are always defined (up to equivalence) as
L2-functions, and they have very simple, algebraic properties.
They constitute the natural framework for discussion of de-
pendence/independence-structures, because of the clpse analogy

between independence and orthogonality.

The conditional distributions should only be considered, when

they are actually of interest as distributions; by this,

I mean, that their own probability fields are considered.

The typical application of conditional distributions is the
“realization » of the stochastic varigble x & (X,/i) in the
following way: Choose (at random) y € (Y, V ); then, choose
(at random) x e (X,ﬂﬁ'). A Ycorrect ” application of con-~

ditional distributions is conditioning upon an ancillary

statistic in a statistical model. In this application, the

"econditional experiment ** is regarded as if it was actually
carried ocut. In such examples, a definition of the conditional
distribution, given a value of y, is certainly convenient (if

not necessary).

An analogy. The definition of conditional distribution
and conditional expectafion has an obvious, classical analogue:
Let F Dbe a real function of a real variable. We can define

the derivative f of F by the equation
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£G) := ln E(F(x+h)-F(x)) .

We can also define f as the function, satisfying the equations

f(x)dx

F(x,) - F(O) , x,_;, e R.

The last definition is the more general, and it has, from a
mathematical point of view, many nice properties, not shared
by the first definition. But according to the second definition,

f is only defined up to egquivalence.

 For the definition of the concept felocitz, we prefer the

first definition of the derivative. It requires stronger
regularity assumptions than the second definition, but it

makes the velocity at time t a welldefined and locally deter-
mined number. The second definition would reduce the velocity
to an equivalence class of functions, the only concrete property
being , that we may integrate the velocity function‘in order

to compute certain distances.
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5. THE CONDITIONAL DISTRIBUTION OF A DERIVED STOCHASTIC

VARTABLE.

Consider a diagram

4
C ’
},i)""‘m‘—"‘"_.}(iﬁl’>
=
|
|
A4

where Z consists of one point). Therefore, we shall give

¥
o]
D
=N
N
2
<Tr
} -
0}
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distribution of s(x) , given t(x) = y.

The distribution gy , defined in this way, is called a condi-

tional distribution of a derived stochastic variable (namely,

the derived stochastic variable z = s(x) ), or, simply,

a derived conditional distribution.

In the following, we write gB for s()LB)

In case s is continuous, the above definition is consistent

with the first proposal 7 = s( /J)

5.1 __Theorem. Suppose that s is continuous, and let y be

a point in supp vV , such that the conditional distribution
/4y is defined, Then, also the derived conditional distri-
bution fy is defined, and
Y

§7 = s(p

Proof: It follows immediately from corollary A 16 (page 346)
that the mapping

g sy
PE - £2)
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is continuous. The conditional distribution ;Ay being

defined, we have (for B- y)
lim §B = 1lim s(/AB) = s(liquB) = s(,Ay) e P2,
i.e. g’y is defined and equal to s(}Ay).

The existence of a derived conditiocnal distribution can, in a
unique way, be associated with the existence of a proper ”
conditional distribution; consider the following diagram,
constructed from the diagram in the beginning of this section

(page 26):
(%, ) —880 (v, ) —B—s (7, ¥)

The homomorphism (t,s) is (of course) defined by (t,s)(x)

= (t(x),s(x)), and Y denoctes the transformed measure

y = (t,s)(F) . The transformation p is the projection

on the first component Y of the product YxZ . The relation

p(; ) =y foliows immediately from the equation pe(t,s) = t .

The transformation (t,s) reduces the original probability
field to the smallest probability field, describing the joint
stochastic variation of y and z. Hence, it is not sur-

prising, that we have

5.2 Theorem. 'The conditional distribution §y° of
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a derived conditional distribution represents a convenient
notation, rather than a new concept. We need not (and shall
not) discuss results concerning existence and.properties of
derived conditional distributions, such results being easily
deduced from the the results concerning »proper » conditional

distributions, by means of theorem 5.2,

If we regard a stochastic variable x & (X,ﬂ.) as being

derived from itself, theorem 5.2 yields the following result:

5.3 Corcllary. Let

t: (X,/t.) - (Y,v)

be given, and suppose for I, € Y +that the conditional

distribution )470 is defined. Put
y = (tnx)(/L) e P (¥Yx X)
(here, 1¢ + ¥> X denotes the identity).

Then, the conditional distribution of (y,x) = (¥Yx X,y ),

given y = Yo o is defined, and given by

v _ y
Jo B £y°®’l°
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6. REMARKS.

Differentiation of set functions. The technique of letting

a set B tend, in some sense,‘towards a point ¥y, is wellknown

from the theory of differentiation of set functions, see

Lebesgue (1910), Hahn and Rosenthal (1948), Saks (1937),
Dunford and Schwartz ( 1957 !). This analogy becomes even
more clear in section 20, where the definition and properties

of essential values are modifications (or even special cases)

of definitions and results from the theory of differerntiation

of set functions.

Let M and A be two measures (or just, additive set functions)

on some space, and define the Radon-Nikodym-derivative

%&’(X) t= 1im, %% .

(A ~x)

where (A - x) » means, that A tends to x in the sense of
section %, but under certain regularity assumptions about the
set A during the passage to the limit. In order to obtain
almost-everywhere~results, strong regularity conditions may
be imposed on A. For example, in case A 1is Lebesgue measure
on :mn, the following result is typical: If A denotes a cube,

containing x , then the limit %ﬁ"is'defined A -~almost every-

2ip

where, and is the density of the absolutely continuous
part of u . Thus, in case M is absolutely continuous,

the Radon-Nikedym-derivative is simply the density of A
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with respect to A , the existence of which is known from
the Radon-Nikodym theorem. The theorem cited here can be

found in Dunford and Schwartz, page 214.

In our definition of the conditionsl distribution, no restrictions
were imposed on A (or B, as we called it there), except for

the -obviously necessary- condition 44 >0 (in section 3:

vB>0 ). It might be of interest to see what happens, if

the definition of the Radon-Nikodym-derivative is based on

this unrestricted * net.

Density. Instead of ”Radon—Nikodym—derivatiﬁe » , we shall
use the term density, to keep closer to the terminology applied
here (see page 350 ) . Let p and 2 Dbe measures on a

(locally compact and o-compact) space X, and define for x e X

d(x) := 1lim T -
Aox
AA>0

The: number d(x) € R (if defined) is called the density, or

the local density of I3 with respect to 2 at the point x.

6.1 Theorem. Suppose, that d(x) is defined for all x.

Then, 4 1is continuous, and
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This theorém is not hard to prove. But we shall not prove
it here, since we are not going bto use it. The theorem is
very likely to be found among the results proved in the
extensive litterature about differentiation of set functions.

Continuity of limits of the type 1lim 2 The most interest-

A

T
ing statement in theorem 6.1 is certainly the continuity of d.
This continuity turns out to be a general property of limits

of the type introduced in section 3:

6.2 Theorem. Let 4 Dbe a measure on X, and let 2 be

a completely regular topological space (i.e. Z is a

Hausdorff space, and any point of Z has a neighbourhood

base of closed sets ). Let

A Z,

be a mapping, from the set of open sets A < X with compact
closure into the space 2, ILet C denote the set of points

x in X, such that the limit

exists, Then, the mapping

¥ > 7 . C = 4
is continuous.
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This theorem is also easy to prove; and we do not do so as
we have no use for it. The continuity of conditional distri-
butions (section 22 ) | which is certainly a special case of
theorem 6.2 above, comes out in a different manner, as a .

consequence of the properties of essential values,

Definition of a conditional distribution by differentiation

was proposed by Seren Johansen (1967). The definition given
there is easily seen to be equivalent to the one given here,
the only difference being, that the set B is replaced by a
continuous function g0 with compact support (the support
tending to y , in the sense defined here). It was proved,

that the measure M can be represented as a mixture of measures

Ky o where Py denotes a contact point of the net (/A g‘{g-» ),
defined as indicated above. From this result it follows im-
mediately, that M can be represented as a mixture of the
conditional distributions /“y , in case they are all defined.
The result is obtained by means of Choquet’s theorem on
representation of points in a convex set as barycenters of
probability measures, concentrated on the extreme points.

Any extreme point of the closed, convex hull of the set

{/AB| vB>0} < P (X) turns out to be a contact point for

one and only one of the nets (’Lgl g>y).
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CHAPTER III: EXISTENCE OF THE CONDITIONAL DISTRIBUTIONS

7. CONDITIONING IN A DECOMPOSED MEASURE SPACE.

Let 4 denote an arbitrary measure on X . Suppose we have

a continuous transformation

t: X - Y .

By a decomposition of 4 with respect to t , we mean a

representation of 2 as a mixture of measures, concentrated
on the level surfaces for +t . An immediate example is the
decomposition of a probability measure into its conditional
distributions with respect to t (see theorem 23.3, page 196 )3
but we can also think of the decomposition of Lebesgue measure

2

in I as a mixture of Lebesgue measures on vertical lines

(1ines vparallel to the y-axis).

Definition. A decomposition'of 24 with respect to t
is a pair

(4, (agl v,

. ! ) . .
consisting of a measure A on Y and a continuous mapping

y » A ) Y - JM(X)
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such that the following two conditions are satisfied:

(1) For yeY, suppi, c £ (y)

(2) For ke K(X), Ak x[ayk]y .

Condition (1) implies, together with the continuity assumption,
that [?\}}:]y is a K(Y)-function for k & X(X) ( ‘)yk
is O for supp Ay N suppk=©@ , i.e. for y in the complement
of the compact set +(suppk ) ). Hence, the right side in (2)
is welldefined, and condition (2) expresses, that 4 is the
mixture of the measures ﬁy with respect to 4 (see the appen-

dix, page 351 ).

Now, let I be a probability measure, given by the density f
with respect to A (page 350 ). We shall try to construct the
conditional distribution of x & (X, /&)', given +t(x) = Yo »
for some Y, € Y .

It follows from theorem A 22 (page 352 ) that f is ’Ay-inte—
grable for 4 -almost all ¥y , and the ' —almost everywhere

defined function

g(y) = 2_f
is 4'-integrable with

! = 2' = = .
g [ﬂyf]y AL 1
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Thus, the function g 1is a probability density with respect

to 2', and it is not difficult to prove, that the corresponding
probability measure is exactly the transformed measure Vv := t(/n):
For h e K(Y) , we have

vh = p(het) = (£:2)(het) = A (£.(het))
= 2 f-(het z ‘Th f = A(n-
[?\y( ( ))]y Ay Ay ]y A(h-g)
= (g-4)n .
The identity £ follows from the fact that het is constant

on  Supp ﬁy , according to condition (1) in the definition

of a decomposition.

7.1 _Theorem. Let J, € supp 2" be given. Suppose,

that there exists a neighbourhood Vo of Yo such that

(1) £ 1is ﬂy—integrable for all y in VN supp A
(i.e. g is welldefined on V N supp .

(2) ely,) > 0.

{3) The two mappings
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vy ely) s V, N supp Y 5 R

v - f-ﬂy s Vonsuppé\' s M

are continuous at the point Jo -

Then, the conditional distribution of x , given t(x)=yo s

is defined, and given by

Yo - 1.z .
M =7 T2y,

o

Notice, that the condition (3) is satisfied, if the densities
f and g are continuous. Moreover, g mneed only be continuous

at the point Vo -

In the proof, we shall need the following lemma:

7.2 Lemma. Let 4 be a measure on X , and let f be

an integrable (or just locally integrable, see page 350 )
function. Let X be ; point in supp 4 , and suppose
that the restriction of f to supp A is continuous at

the point Xy . Then

1im (a°) £(x,) .
A-+x° 24
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Proof: For & > O , choose an open neighbourhood U of

4+

with compact closure such that

o
o
™
—
!
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.
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o
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. . ) ) S o U
Proof of the theorem: It follows from the

Yo belongs to supp VvV .

nl

o]

For a function k & K(X) , we have for B->y_ ( vB>0)
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i/ 7 e 1 \ 1y
A ﬁ"‘jL“\l ")\v;r\]v/;’?\ R
: J

/X : f‘

-g)/AB

(we have 2A'B>0 , since yB>0 ).
A > . : 72N . F -
According to the assumption (3) the functions

o
o]

fu
n

< . . : N 1
are both continuous at the point y _, relativelyto supp 2

! +

(i.e. as functions supp 4 - 1] ). Hence, by the lemma, we

i
. td
3
[
o]
H
=
2
4

hat the continuity assumption about g is, in reality,

an assumption about the decomposition and the density I .

It does not suffice to assume, that g 1is eguivalent to some

—— el e

continuous function. The argument in the proof is valid in
this case also, but the conditional distribution is defective,
if the normalizing factor g(yo) must be changed in order to

obtain continuity.
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is the density of v = t(/A) with respect to A' . Theorem 7.1
takes the following form:

8.1 Theorem. Let Y, € supp A ve given. Suppose there
exists a neighbourhood Vo of Y, such that the following
conditions are satisfied:
(1) For ye V_ n supp 2' , the function [f(y,z)]z
is 4" -integrable (i.e. g is welldefined on
vV, N supp 2 ).
(2) ely,)> 0.
(3) The mappings
v - ey = A[£G,.2)], Vv onsuppd > R
7y - [f(y,z)]z-ﬂ" s V, N supp A s (D)

are continucus at the point Yo -

Then, the conditional distribution of (y,2z) & (Y x3Z,p),

given y = To @ is defined, and given by

y. ’| . . it
p¥o - 6] f(syOO/A)-
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The theorem is a trivial translation of theorem 7.1, except
for this: Continuity at ¥s of the mapping y—- f- ﬂy
(page 39) is, in the present case, equivalent to continuity

of the mapping

y - .f-(eye M), v, N supp A 5 MY X Z)
at the point To o But it follows easily from theorem A4 5
(page 337 ) that this is equivalent to continuity at 7y,

of the mapping
v - [f(y,z)]zoﬂn s vV, N supp A s M),
as assumed in theorem 8.1 above.

The conclusion of theorem 8.1 looks somewhat complicated,

the conditional distribution of (y,z) Dbeing concentrabted
on the fibre {yo} x Z in the product space. The conclusion
may, however, be rewritten as follows by theorem 5.2 (page

28-29):

The conditional distribution of 2z, given y = Yo
(for (y,z) e (Y=x Z,)ﬁ.) ), is defined and given by the

density

g7§'—7 [f(yo,z)]z ( = const« £(y ;) )
o

with respect to 2° .
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Just as in theorem 7.1, the condition (3) in theorem 8.1 is
satisfied, if f and g are continuous. But continuity

of f is far from necessary, as the following theorem shows:

8.2 Theorem. Suppose, that the conditions (1) and
(2) of theorem 8.1 (page 43) are satisfied. Furthermore,

assume that

(%) Wi [£(y,2) - £(y_,2)],l » O for
1y To) A
ye V_n supp A s T > T, .

m g
Then, conditi

vf theorem 8.1 (and so the con-

O
3

N

W

S
o}
¥

clusion of that theorem) is also satisfied.

Proof: The condition (3)°’ expresses that the mapping

y = Ef(.,VaZ):IZ

V, N supp 2 =  L(A")

s continuous (the space L(2") is defined on page 342 ).

[N

Condition (3) follows immediately from the fact that the

mappings
h- 2"nh , L") » R

and h- h.a" , L(A") - M (Z)
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In case f is not continﬁous, theorem 8.2 can be applied.

In all cases of practical interest, the condition (3)’ is
satisfied, except possibly for Y in a closed.null set of
singularity points (usually the discontinuity points for g).

We shall not here go into a detailed discussion of the regularity
conditions one may impose on f in order to obtain pointwise or
almost everywhere existence of the conditional distributions.

The considerations in section 17 will show +that the conditional
distributions are defined, at least almost everywhere, in all
reasonable situations of this type. For counterexamples,

see section 30.

Conditioning in the continuous case. In chapter IV, conditioning

problems in the continuous case (as defined on page 22) will
be handled by tools from differential geometry. For the sake
of completeness we shall here outline the wellknown , more

elementary methods, usually applied to probability theory.

The idea is, in short, that conditioning problems of suitably
regular type can always be transformed into problems of the

P product type »” , as discussed in this section:

Let
t: R'=s J’" (mgn)

be a continuously differentiable transformation with differen-

tial Dt(x) = ((byi/ bxd )) of rank m . Suppose, that
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we can choose a "supplementary transformation

s: RYP o D

such that the transformation

(t,s) : R* —» R'x R*™

]Rn -

maps jizen diffeomorphic into an open set X’ < R x
(by a diffeomorphic transformation we mean a forwards and
backwards continuously differentiable 1-1 mapping). Let

I be a probability measure on r" , given by the density

f with respect to Lebesgue measure. DBy the integral trans-

formation theorem, (t,s)(p) has the density

£((6,8) Hx0))
ldet D(t,s)((t,8) " 1(x*))]

£ (x*) = 1X,(x’)

with respect to Lebesgue measure on R x R, Bv theorem

8.1 (possibly via theorem 8.2), the conditional distribution

of x* e (JRx BT, (t,s)(,L) ), given a fixed value of

y = t{x) = (X%, cee ,xé), can now be computed, and for

most purposes this conditional distribution is quite as good

a2s the conditional distribution of x itself. A representation
of }Ayo as a transformed distribution is actually the best

we can hope for, as long as we have no tools for a description

of ’Lyo by its density with respect to some ares measure
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on the surface t—1(yo) .

The method is, in fact, more powerfull than inaicated above;
some of the seemingly restrictive assumptions (like the maximal
rank of the differential, and the existence of a Ysupplementary
transformation” s) may be satisfied after a simple adjustment
of the problem. If the rank is not maximal, a *projection »
of B® on a space of lower dimension may help. The trans-
formation s can always be chosen locally, if the rank con-
dition is satisfied; hence, a division of R® into a number

of open sets and a closed null set, followed by an application
of a result about »piecewise conditioning » (see section 28),
may solve this problem. 4 closed./L-null set (for example,

a set of singularity points for +) can always be removed from
R” without changing the problem essentially, since the methods
indicated can be applied to open subsets of Euclidean spaces,

as well as to Euclidean spaces.
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9. CONDITIONING IN A STOCHASTIC PROCESS.

In the theory of stochastic processes, many results must be
deduced from corresponding finite dimensional results, by
»approximation ¥ of a process: by its finite dimensional

marginal distributions.

In relation to conditioning, two different kinds of approximation

seem to be of interest:

(1) Conditioning in a stochastic process: Approximation
of a conditional distribution of the whole process by
the conditional distribution of finitely many states

X v b4 .
T4 ! ! tn

(2) Conditioning on a stochastic process: Approximation of
a conditional distribution, given the sample function
of a stochastic process, by the conditional distribution

'(of the same thing), given the values of the sample

function at finitely many time points.

Approximations of the type (1) turn out to be legal in

Aexactly the sense one should expect. Approximations of the
type (2) is a more delicate matter; no local results seem
to be valid, so we will havé to return to the problem later

(section 29).
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Consider a compact

i
ieT
1
and for
I c I, c I
1 = 2= -
we let
P - : XI - X
271 2 1
denote the projection, i.e.
1 - 4 ‘ 3 = \
pIﬁIA(Xi'l = Ig) = () 1 e Iﬂ; .
“ i

~ are denoted x-
41

butions corresponding to a probability measure

y ¥ etc. The finite dimensional

i
marginal distri

P1 on X (see the appendix, page 354 ) are denoted

Ky = pm(ﬂﬁ e P&y M e ?o ’

where 5&0 denotes the set of finite subsets of
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9.1 Theorem. For a homomorphism

t: (X ,'/41) - (Y, »)

and a point Y, € supp v, the following two conditions are

equivalent:

(1) The conditional distribution /15]?0 of the process

x; € (XI,)LI) , given t(xI) =¥, » is defined.

(2) For M e ?o , the derived conditional distribu-
tion }Lry,lo of Xy i= pIM(xI) , given t(xI) =Yg »

is defined.

In case of existence, the conditional distributions

/Lﬁo constitute the consistent family for the »condi-

tioned process ™ }17]):70

Proof: The statement (1) = (2) follows immediately from
theorem 5.1 , and, in addition, this theorem proves that the
measures IL%O are the finite dimensional marginal distributions
for }4%0 . It remains to prove that (2) =(1): Suppose,

that the conditional distributions }1%0 are defined. Let M
and N Dbe finite subsets of I , such that N c M . We may

then regard the stochastic variables
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as derived from the stochastic variable

D
)]

by  (F,xy) = (¥, vy

un®) )=

By theorem 5.2, the conditional distribution of (y,XM),

o)

given y = To o is defined and equal to

-
Y0
According to theorenm 5.1 , the derived conditional distri-
bution #ﬁe can be computed as a transformation of €, ® }L%O
iN ‘Q i

&

ol Me ?;).

=

This proves the consistency of the family (/A
By Kolmogorov’'s consistency theorem (page 354 ) a probability

measure on XI is determined. Let us (being optimistic)

denote this measure by y%o .

For any finite subset M of I , we have
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y ¥y
Pu( T = py° = _lim ppy pr

It follows immediately from this equation, that any contact
. . B Yoi ;

’ £ =) ' [o] +=

point of the net (}AI§3-+ yo) has (}‘M M e ?%) as its

consistent family. By the consistency theorem, we conclude

that }g§° is the only possible contact point. Since F’(XI)

is compact, we must have

n -
im = = JO
Bl-;z.. iL‘ I )J.I s
To
. Yo sa +he R PR ion -
i.e. R is the conditional distribution of x; (XI, Pi)’
given t(x;) = o -
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CHAPTER IV : CONDITIONING IN THE CONTINUOUS CASE

10. SCOME REMARKS ON MATHEMATICAL PREREQUISITES.

In the following six sections (10-15) some tools from algebra

and differential geometry will be introduced.

It has been somewhat difficult for me to decide how much of
the mathematical framework to include here, and how much to

assume to be known.

On the one hand, a complete introduction to the branches of
mathematics which we are going to use would become much too
extensive; furthermore it would be useless, because I might
as well refer to other éxpositions of a higher quality. None

of the results are new.

On the other hand, many of the special results which we shall
need can be understood with less knowledge than normally
presumed in the litterature. This can be illustrated by the

following two examples:

The geometric measure on a Riemann manifold is, from a geometric

and measure theoretic point of view, a very simple concept.

Now, for obvious reasons the theory of this measure has been
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developed by differential geometers, and within differential
geometry it is easy to construct the geometric measure as
a special case of the measures one can obbtain by integration

of differential (tensor-) forms. In our exposition, a measure

theoretic approach seems more natural, and does not require

any use of tensor products and forms.

For determinants-on Euclidean vectorspaces we shall need a

few results which are obviocusly special cases of much more
general results from the extensive theory of multilinear
algebra. The most elegant theory is obtained by means of the

exterior algebra of a vectorspace (see MacLane and Birkhoff(1967),

chapter XVI). A proper construction of the exterior algebra
requires some knowledge of categories and functors. The results
needed here can rather easily be derived from the more elemen~

tary theory of determinants for matrices.

For this reason I have decided to introduce the necessary

tools here, without assuming prior knowledge of too special
subjects. A further motivation for this is my belief in the
relevance of the local definition of a conditional distributicn.
It is wellknown that the applicability of a theory depends
strongly on the number of books one has to take a look in (or
even read) in order to understand it, c¢fr. the remarks on

stochastic processes on top of page 8.

Below, I shall comment on some subjects that may be more
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or less new to the reader.

Category theory is not really used as a tool, but the language

of category theory will sometimes be used, just to clarify
things. Terms from category theory will be explained to the
necessary extend. Formulation in terms of categories and
functors may be of help to readers knowing this thgory, and
to other readers it will represent no further difficulties

than those of a somewhat peculiar (but convenient) terminology.

Litterature: MacLane and Birkhoff (1967), Mitchell (1965).

Diagrams can be defined as a special sort of functors, but
they can also be introduced as a more elementary concept:

By a diagram we mean a (usually finite) set of objects

E1 s E2 s +ss 5 connected by homomorphisms f,I s f2 y eee e

We draw a digram as a collection of points (representing

the objects) connected by arrows (representing the homomorphisms).
Example:
‘ E2 E5
y’\%
1 f2 E4
Xﬁ
E

3
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As
objects and homomorphisms

we may take
sets and functions ,
topological spaces and continuous functions ,
vectorspaces and linear mappings ,
probability fields and homomorphisms, as defined

on page 16

etc.ete.

The character of the objects and the homomorphisms is determined
by the category, we are studying at present (the category of
sets and functioms, the category of topological spaces and
continuous mappings, etc.). The idea is, in most cases,

that the objects are sebts with some kind of gtructure, and

the homomorphisms are mappings, preserving the structure in

some sense. Hence, for most purposes, we may regard a cate-

gory as a concept of structure.

A diagram is said to commute {(or to be commutative) if it is
consistent with respect to compositions; for example, the

diagram on page 57 commutes if and only if
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Thus, commutativity means that an element in one of the sets
(objects) can be manceuvred into at most one element in each
of the other sets, by means of the homomorphisﬁs in the dia-
gram. Different routes between two objects in the diagram

lead to the same result.
On page 26 and page 28 very simple diagrams in the category
of probability fields and homomorphisms were studied. Diagrams

like those do, of course, always commute.

In section 11 we shall meet diagrams like

° - . \ .
l ’i ’l
. )o ;.
i.e., diagrams pieced together of »squares » of the form
O—-ﬁ.
.——.——.’.

Such diagrams are easily seen to commute if and only if any
of the squares commufea(unless the diagrams have “holes ™ ;

which they never have in our applications).
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matrices.

-6 -

A

will always be identified with its

1ilar notation

than 1R, a sim

a: 'LT,])’
is writt as a matrix
a =
L
the elements of which are

d,}/“ H
a4p ¢
a5,
855 ¢
determined by
v
v = 1 = au

¥or mappings between produc

linear m

Uq-e
Uz—é
Uﬂ-e
b2—9

i
a

mx n-matrix in

V.

Vv

n

v

n

A linear mapping

the usual

of vectorspaces others

de

example, a linear

¥
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849 * 240U
asquq * 8ppUs

Notice, that the notation requires that elements of the product
spaces are written as columns, which we shall usually not do,
except when matrix notation is actually applied (but most of

the time we write (uq,uz) etc.).

In case the vectorspaces U1, U2 ,V1 and V2 are spaces of the
type jize (i.e. Euclidean vectorspaces with selected orthonormal
bases), the abeove notation is consistent with usual matrix
notation, in the sense that the matrix a can be pieced to-
zgether of the *blocks ” aij .

For mappings of the form

2, C
a = o : qu U2-+ qu V2
b~
(i.e. a(uq,uz) = (a.,’u,| s a2u2) ) we write
a, x a, = a .

Differential geometry will be developped to the extend needed.

Readers with a background in differential geometry may skip

section 12 and 13, and possibly section 14. It should be
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noticed that our definition of a submanifold (page 107 ) is
different from the usual one .

Litterature: Hicks (1965) , Helgason (1962), Dieudonné (1970).

The results of section 12, 1% and 14 can, with few exceptions,

be found in Hicks (1965).

Decomposition of the geometric measure. The results of section

15 are, probably, special cases of more general results, to

be found in expositions like
Whitney (1957) , Federer (1969).

But the formulation given here, based on determinants on
Euclidean vectorspaces, is different from anything I have
seen in the litterature, so I am not able tc give any explicit

references.
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41. DETERMINANTS ON EUCLIDEAN VECTORSPACES.

By a Euclidean vectorspace we mean a finite dimensicnal vector-

space E over the reals, equipped with an inner product

(u,v) = (ulv)g (or just (ujv) )
ExE = R .

By selecting sn orthonormal base, we can identify E with
the space R® (n = dim E), equipped with the usual inner
product

n
(ujv) = T w Ve .
=

It ic essential, however, that definitions and results in the

following are independent of a possible cheoice of base.

Adjoint linear mapping. Let E and F be Euclidean vector-

spaces, and let

a: E~ F

be a linear mapping. The adjoint linear mapping

a*: F— E

is the mapping taking v € F into the element a*(v) e E

determined by the equstions
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(a(w)|v)p = (ula*(¥))g ueE .

The following properties of adjoint mappings are easily verified

J

(see MacLane and Birkhoff (1967), or any introduction to linear

N - -
(ab) = b*a* for a:F-» G , b: E> F ;
(a*)* = a .

*

a injective & a surjective <& a¥a bijective

urjective &> a* injective <> da* bijective .

[
1]

PN /o= c e s
(a7 )% = (a¥%) for a bijective.
If a: E- F has the matrix A = ((a.,.)) with respect to
i3 p
o

given, orthonormal bases in E and F , then a¥ : F=> E

i
o
[4)]
ct
o
(0]
ct

ransposed matrix A’ = ((a..)) with respesct to the

Subspace and quotient space. Let E® be a linear subspace of

a Buclidean vectorspace E., Define an inner product ( i )E*
on E’ , simply as the restriction of ( | )E . Equipped

with this inner product, E’ is called a Euclidean subspace

of E .

Dually, let the vectorspace E” be a guotient space in E ,
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i.e., let there be given a surjective linear mapping (the

»projection ” on the quotient space)
p: E= E” .

The inner product on E induces an inner product on the
quotient space, as follows: Let E® ¢ E denote the kermel

for p . The orthogonal complement E’l is mapped bijectively
on E” by p . The Euclidean structure (the inner product)

on E” is defined by this identification

ol

[

E”

of E» with a Euclidean subspace of E , We call E?” (under

this structure) a Euclidean quotient space in E . We shall

sometimes write

E” = E/E’ .

The mapping p will be called the coimbedding (dually to

imbedding) on the quotient space (the more common term

projection has another meaning here, as an orthogonal pro-

jection, i.e. an endomorphism p:E-» E satisfying p* = p

2. p ). Our definition of the inner product on E”

and D
seems artificial, but it will soon be obviocus that the concept
of Euclidean quotient space is quite analogous (dual, to be

precise) to the concept of Euclidean subspace.
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Isometries and coisometries., Iet E and F be Euclidean

vectorspaces. A linear mapping
a: E= F
is said to be isometric, if it preserves inner products:
(a()lalv)ly = (u|vdy .

An isometric mapping (or an isometry) is injective, since it

preserves distances. Regarded as a mapping E- a(E) , an
isometry is an isomorphism according to vector space structure

and Euclidean structure. This means, that an isometry can,

in a sense, be regarded as an imbedding of a Euclidean subspace.

It is easy to prove, that a ig isometric if and only if

PO
a¥a = ;.

Dually, a linear mapping is said to be coisometric if

Obviously, a is coisometric if and only if a¥* is isometric.

Let a be coisometric. Then a is surjective (a* being
injective). Put
K := Ker(a) = a '(0) .
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The linear mapping
aa : E— E
then equals the orthogonal projection onto Kl
The equaticns
(a*a)(a*a) = gf(aa*)a = 3a'a
and

(a*a)* = a¥a** =  a¥a

show that a*a is an orthogonal projection, and the kernel

of a*a equals the kernel of a , a¥ being injective.
For two vectors u , v € K-L we have
(aWfa(v))y = (az*a(u)lalv))y = (a*alw)ja*alv))g
= (ulvip
i.,e. a maps K-L isomorphic {according to inner products)

on F . This means that F can be identified with the Euclidean

quotient space E/K . Hence, a coisometry can, in a_sense,

be regarded as the coimbedding on a quotient space.

The concepts of isometry and coisometry thus remove the need
of the concepts Euclidean subspace and Euclidean quotient
space. According to Euclidean structure, it makes no difference

whether we think of a subspace as a concrete gubset, or just
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assume that an isometric ™ imbedding » is given.

Image and coimage. Let E and ¥ be Euclidean vectorspaces.

The image of a linear mapping a: E-= ¥ is the Euclidean
subspace

Im(a) := a(E)

of F . We have a unique factorization

of a through its image; here Jj denotesthe imbedding of
a(E) in F , and a8, 1s uniquely defined by the equation
above. We may alsc define a, as the (unique) linear mapping

such that the diagram

Im(a)

commutes. Thus a, is simply a , equipped with a new co-
domain. Arrows of the form — 5 are used for isometries
in the following (i.e. for imbeddings, the sign =3 being,

of course, derived from < ).

Our definition of the image is not quite exact: The image is,
of course, more than a Euclidean space; it is a Euclidean

subspace of F , regarded as a subspace in a certain manner.
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This is certainly subsumed when we say that the factorization

of a through its image is unique.
The dual concept can be defined as follows:

Again, let a: E-» F be given. The coimage of a is the
quotient space

Coim{(a) := E/Xer(a) .

We have a unique factorization

of a through its coimage, illustrated by the commuting
diagram

E—-=3a 4 F

] <

Coim{a)

Here, p denotes the coimbedding on the quotient space.
The mapping a® is simply a , equipped with a new domain
constructed by identification of elements with the same image

under a. Arrows of the form+———3 denote coimbeddings.

Standard symbols like e— 3 and 13 (and later we shall
introduce =23 for isomorphisms) are convenient, because
they enable us to build a lot of information into the diagrams.

For example, in many connections we need not introduce particular
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names for imbeddings and coimbeddings if it is obvious from

the context what the arrows stand for.

It should be noticed that the definitions given here do not

in any trivial manner come out as special cases of definitions
in abstract category theory. The category of Euclidean spaces
and linear mappings (i.e. the category we are studying at
present) does not reflect the structures we are interested

in, since the homomorphisms do not preserve the Euclidean
structure. Euclidean subspaces, quotient spaces, images and
coimages are constructed within the category of finite dimen-
sional vectorspaces, and then equipped with a (forwards or
backwards) induced Euclidean structure. Notice, for example,
that image and coimage for a linear mapping are not Euclidean
isomorphic, though they are, in a canonical sense, isomorphic
as vectorspaces. The Euclidean structure of the image comes
from the codomain, while the structure of the coimage is

induced by the structure of the domain.

Determinants., Let E and F be Euclidean spaces of the
same dimension n , Let a: E- F be a linear mapping, and
let A denote the matrix for a with respect to given,
orthonormal bases. By the determinant la] of a we mean

the absolute value of the determinant of A , i.e.

|a] := |det 4.
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This number |a|2 O is independent of the choice of ortho-
normal bases, since the matrix A1 of a with respect to

some other orthonormal bases appears from A by
A, = TUAV?
where the coordinate shift matrices U and V are ortho-

normal {(or unitary). Orthonormal matrices having determinants

+1 , the absclute value of the determinant remains unchanged.

The use of the name determinant, instead of something more
correct like ™ absclute determinant » or *positive determi-

nant ” will not lead to misunderstandings, since the signed
determinant can be given no meaning under our assumptions.

It requires, at least, that the spaces E and F are equipped
with orientations, or that E = F . In the case E = F the
(signed) determinant is (and should be defined as) independent
of the Euclidean structure, but such * endomorphism determinants”

should not be confused with our Euclidean determinants »

Trom wellknown properties of (matrix-) determinants, the follow-
ing rules are easily proved:

|1 1 (also for E = 0).

E|=’

For a: E-» F

b: P> G ,
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where E, ¥ and G are Euclidean vectorspaces of dimension

jbal = |v]]al .

5
foN)
ol
o
*
o]
ki

having welldefined determinants, whatever the dimensions of

E and F might be, we can define

lal, := | a*a|
and la|® := laa®| .

These ™generalized determinants »® are, in fact,’proper *

determinants, in the following sense:

14,1 Theorem. Let E and F be Euclidean vectorspaces,

and let
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a: E~» F

be a linear mapping. Consider the factorization

of a through its image. Then, !ai is different from
0 if and only if dim E = dim (Im(a)) (i.e. if and

only if a is injective), and in that case

]
al = la| .
|aj o!
Proof: We have
dim E = dim (Im(a))
<> a 1is injective
<> a*a is bijective
< |a*al $ O
P ia|0 £ 0 ;

this proves the first statement of the theorem. In order to

*

prove the identity la = la in case E and Im(a)
. 121y t8s

have equal dimensions, we just notice that (; being isometric)

U
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2 - Jatal = [(ag*dagl = |alitia,|
- * - 2
= |a‘a = la lc .

o 0

The dual theorem looks like this:

11.2 Theorem. Let

be the factorization of a through its coimage. Then,

ifferent from O if and only if dim F =

(U]
(5
(f\
o
=

dim Coim(a) (i.e. if and only if a is surjective), and

{ 1in that case
o) o)
| | .

la = |a

Proof: The theorem can be proved quite analogously to theorem
11.1 above. But we can also make a more direct appli-
cation of that theorem, by a typical *dualization *»® of the
problem: Taking adjoints in the diagram above, we obtain a

commutative diagram
»
Ee—2 7
.d
" (a®)

Coim(a)
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Here, p* is isometric and (ao)* is injective; +thus Coim(a)

simply plays the role of the image for a¥ , By the relations
o _ *
laf® = |a*|,

and

a surjective <> a¥* injective |,

the theorem follows immediately from the preceding theorem.

In addition, we have derived a canonical identification
Coim(a) = Im(a¥*) .

We are now in the position to prove certain relations between
determinants of mappings in commuting diagrams, satisfying
certain exactness conditions. The results will be applied
in section 15 and section 18; it may be a good idea to post-
pone the reading of the rest of this section until the neces-

sity of the results becomes more obvious.

The following lemma reflects a basic property of determinants.
The two theorems 11.4 and 11.5 are just more convenient formu-

lations of -essentially- the same result.

11.3 Lemma. Consider a commutative diagram of the form
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[ 3 . >
E, »E + > E,
a,] al 3.2
E)S > E* > EJ

of Euclidean spaces and linear mappings (arrows ey

and +——> denoting isometries and coisometries, respective-
ly). Suppose that the rows of the diagram are exact, i.e.
E1 and E% are, as subspaces of E and E® , the kernels

of the two coimbeddings. Further assume that

dim E1 = Qim E% = n
dim E2 = dim Eé = m
(and thus dimE = dim E' = n +m ).
Then, _
lal = layllayl

Proof: An orthonormal base for E can be chosen in such a

way that the first n base vectoré constitute a base for the
subspace E1 . The remaining m unitvectors then constitute
an orthonormal base for the subspace E1l = E2 , i.e. they
are mapped into an orthonormal base for E2 by the coimbedding.
A similar choice of bases can be made for the spaces E% .

E®* and Eé . By means of these bases, the Euclidean vgptor-

spaces of the diagram are identified with spaces r , B ete.,
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so we get a commuting diagram

1 s
Vv
R? & R R® b9 R"

where Aq , A and AQ denote the matrices of 3, > & and
a with respect to the selected bases, and the imbeddings

and coimbeddings are simply the imbeddin

S

N

e d

. . n m
on the second component in the product space R x IR .

()

et the matrix A be written as a ™block matrix ” (see page

) on the form

[G)])
N

corresponding to the product structure of its domain and
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codomain. Thus

-
¥ ! A Ay + A, Z
A ;_ - !V 11 12
L z L. quy + Aggz
Now, let us follow an element y of R"? and an element
E fl of R'x E" through the diagram:
Led
vd
i
L 1 A\
‘ ¥
NN LTI
117_9L O A2’1y ..........
[y ] _ s
L Z_j — > 3z
|
. !
A J!, i Ay
Az
; [A’I’IY+A1?Z] °
sresesd - HN
A21y+A22z A2qy+A222
The commutativity of the diagram implies that
Fa o] ]
| hav | A
L 4217 0

and quy + A222 = AQZ .
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. s . - N m
These equations being valid for all ye IR and all z e IR
we conclude that
A = A
11 1
A,, =0
24
and 5X22=A2 .
Hence, A has the form
r -1
1
lé—'ﬂ’ ’]:’%
A = ; ' = .
e i
L 2 ]
From wellknown properties of determinants we conclude that
r 7 ~
A, A .| F A,1 O
det A = det | = = det !
i O A, 0 A?‘j
L‘ - i | . [
= det A, - det A,
i <
(if A1 is regular, we can cancel the columns of A42 by
subtraction of linear combinations of columns from Aq . If
A, is not regular, we obviously have det A = O , the firs
n columns of A Dbeing linearly dependent). From the above
equation, the lemma follows immediately.
11.4 Theorem. Let there be given a commubtative diagram
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O 0 0
1
| v b., v b, \
0 ———>E, s T - > E, —> 0
a, | a a,
| z
v b2 \ b2 v
| 0 E? 1 55 & 3E2 5 0
L 1 mrd 7..42 0
i
%
0 0 0

. Suppose that

i ¥ o] 1 [}
b} _lal|b3] = Ja,]lv2] 1o, %as] -
110! A 2l | 1!! 1to! 2 !
Remark: The determinants |a| , |a,| and |a,| are well-

defined, since the exactness of the columns implies that a ,
a and a, are bijections. Moreover, the exactness of the

rows implies that b, and b% are injections, while b,

and b} are surjections.

Proof: Factorizing b,1 and b} through their images, and

and b2 through their coimages, we obtain the diagram

b 2

2
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-d

o

.
I €
&

nN

N
t=

-
<
51 a a2
v v
E? E

/
o
-
N\
o
N«
o
p—g
i
-

\'_ A .

seen to commute (though the bijective
from the factorizations of b nd
é have been reversed). Contracting the columns of this

O

diagram, we get a third commutative diagram

=]

G ./\‘

N
~
v

e
-
L 4
Q
o
g 3
8
~~
le)

N =1 7 oy~ O
T o~ » VY
D,i%aq‘O(u,‘c) a! (bp ;) ° 82°b?
i s
v v
1m(b%)f' > E? | }Coimib;)

This diagram obviously satisfies the conditions of lemma

1M.3. Thus
1 b2 |la.llas] b3
= 0N=1 0 1ot 1 941 2 21
lal = Jbo3gease(b, 07 [ (03%) e asebs] = —&
|0, 11057]
10172

e

inally, applying the theorems 14,1 and 11.2 , we get



o o @)
A ﬁ
]
-\ . N . FOJ
o > &1 o o
. ~0\ 2y
S o o )
a0y o ey
Q 0 0
Q > ] - > m . = e O
M I N o A
e - e
Q o) Q
~ - < < S .
O ——> @ ———30
\ﬁ o

Suppose

linear mappings. S

idean vectorspaces and

—t

inen

that rows and columns are exact.

BN
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Remarks: Any of the twelve homomorphisms in the diagram
occur exactly once in the formula, injectidns by their deter-
minant of the type | |° and surjections by their determinant

|° . As in theorem 11.4, itseems as if the factors

of type |
are arranged at random in the formula, but if we draw the homo-
morphisms on the right side of the formula as dotted lines,

a kind of structure becomes visible:

Thus, the factors on either side of the formula correspond
to the arrows on every second zig zag line, if we imagine

that the diagram is part of an infinite lattice.

Notice, that the theorem remains unchanged (except that the
two sides of the formula interchange) when the diagram is

reflected in its diagonal.

Proof: We extend the diagram along the middle column, by
factorizing horizontal arrows through images and coimages
(for convenience, the zeros are now cancelled. The frames

should be ignored at present, they will be used later):
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: —
) i 1 f a0
B Qo T Nt s . R i Po s
S m(b’l) >E?} > 001m(b2) ——=——>E)}
& - @ ° 2
v b g v NA v g Bo N
E, ———%5 In(b,)< >E * > Coim(b,) ——E—> E,
a:{ o a” cé’ : aé,
v b v v 7 By
E» ———25 In(b)) < SE} > Coim(b}) ——=—> EJ

The four new homomorphisms are defined by the condition that

the diagram commutes, i.e,

.o -1
C,’I HES b,’oea,’lo(b,”o)
of 1= by aye(vy)””
c3 := (83) e azo by°
and ey := (bé’o)"qo aé’obg .

The two upright diagrams in the full-drawn frames satisfy the
conditions of theorem 11.4 (if they are overturned and equipped

with a reasonable numbe: of zeros). Hence,

i

|a',]|°|b’|.o|c'?|° |b’1|°|c%lo'a’,],|o|b%’|o

and

o}
leal,lval%azl® |b§|°|a§|olcé’|°lbé’|‘ .

Dividing the first formula by the second, we get (after a

rearrangement of some of the factors):
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. |
la'ilolb"lo'bé'olaé'olbé" - |c’,]|°|cé‘o
131512511001 105 12zl ® ley®lezl® -

Now suppose, that the theorem we are trying to prove is valid
for the diagram in the dotted frame; the conditions of the

theorem are certainly satisfied. Under this assumption we have

1+ar]gee gl Ole > 1-leslleslymrelan®

or
21, deslglesly
lar|® fer®les|®

This formula, together with the formula (*) above, yields

the formula in the theorem.

By this argument we have reduced the problem , such that we
need only prove the theorem in the special case, where all
horizontal arrows are imbeddings and coimbeddings, as in the

diagram in the dotted frame.

Now, in order to prove the theorem in this special case, we
cén reflect the diagram in its diagonal, and do the trick
once more (extend along the middle column etc.). This time,
the middle diagram consists of isometries and coisometries

exclusively (it is easy to prove that the vertical isometries
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and coisometries are not destroyed »® by the extension;
actually, if &’ and a®» in the diagram on page 85 are
isometric and coisometric, respectively, then so are c% s
¢ » ¢3 and c) ). But for such a diagram, the theorem
is trivial, all determinants being 1 . This proves the

theorem,
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12. DIFFERENTIABLE MANIFOLDS.

By a differentiable manifold (or jus

n , we mean (here) a locally compact

[

base for its topology, equipped with

By an atlas ( ?l%g ieI), we mean

t 2 manifold) of dimension
space with a denumerable

an n-dimensional atlas.

a family of (n-dimensional)

charts @y -
By a chart, we mean a homeomorphism

Py U > U
~ . < . T o Il
from an open subset U of X to an open subset U’ of R .
It is assumed that the atlas covers all localities of X |
i.e. that

h'g i1 17

A = o U .

ie T

Moreover it is assumed that overlap between charts can only
give rise to differentiable deformations of the charts. In
the example from which the terminology has been borrowed,

we may think of the cbvious requiremen

latitudes should be marked by smooth

The precise formulation of this consi

that longitudes and

-

curves on the charts.

stency condition is the

following:
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For any two charts
qh : U.-> U2

‘PU- : U, - U5
dJ
the mapping

-1
?Uio ?UJ' : PUj(UiﬂUj) -> QUi(UiﬂUa-)

should be differentisgble.

By differentiable, we mean (here and in the following) infinitely

often differentiable.

lNotice that we are a little careless about specifications of
domains and codomains: We have composed the two mappings
-1 . .
and - though the domain of is certainly
Pu, Pus; ; fu;
not equal to codomain of 4>U_ . Such minor inaccuracies

will frequently be permitted in the following.

Examples. An open subset of R" has a canonical structure
as a differentiable manifold, defined by one chart (the identi-

ty).

An m-dimensional surface X in IRR" can be equipped. as an
m-dimensional manifold, for exampel by a local charting by
orthogonal projection onto tangent spaces (or onto some other

affine subspace of r" , identified with b by a choice of
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origin and some base). If this is to be possible, the surface
must obviously satisfy some regularity conditions. First of
all it must be sufficiently smooth; it must be »open in its
own dimension »” (i.e. no point of the »boundary ** should be
included), it must not »intersect itself ™ , nor oscillate
too close to itself. The precise regulsrity conditions will
be given under more general circumstances (see the definition
of a submanifold, page 107 ).

Differentisbility. ILet X and Y be manifolds of dimensions

any two charts

- .- . N SN

Py U= U’ (X, U0 c R )
B . . - —q0

Py 2 Vo V2 VeY, Ve R )

from the two atlases, the mapping

Pyote Py gy TV) sV

o

should be differentisble (i.e. , infinitely often differentiable).
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A bijective mapping which, together with its inverse, is

differentiable, is called a diffeomorphism. The diffeomorphisms

are regarded as the isomorphisms in the category of differen-
tiable manifolds and differentiable mappings. This means,

that two differentiable structures on a set X are identified,
if the identity mapping 1X:X-+ X , regarded as a mapping from
the first manifold to the second, is a diffeomorphism. The
specific choice of atlas (the number of charts etc.) is not
part of what we call the differentiable structure, and by a
chart we mean from now on a member of some atlas inducing

the given differentiable structure. Thus a chart need not be
a "page” in the atlas we happeﬁed to apply in the definition,
but it should be possible to include it without destroying

the consistency.

Open submanifold. ILet Y be an open subset of the n-dimen-

sional differentiable manifold X . We can equip Y with
a structure as differentiable manifold, taking for its atlas
the family of charts of open subsets of Y . Obviously, the
localities thus charted cover Y , since for any chart

Py: U> U’ on X , the mapping @y y : ¥NU > <PU(YnU)

is a chart.

With this differentiable structure, Y is called an open

submanifold of X .
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The algebras gn(X) and fw(X,xo) . Let K”(X) denote

the vectorspace of differentiable functions
f: X-» R .

Under the usual (pointwise) multiplication, geo(X) has the

structure of & commutative IR-algebra.

For a point x_ & X, the vectorspace ﬂﬁx(x,xo) of differen-

tiable functions on neighbourhoods of X is defined as follows:

The elements of tf“TX,xo) are, at first, defined as functions
f e € 7(U) on open neighbourhoods U of x, (U being re-

garded as an open submanifold). But functions are identified,

if they coincide on some neighbourhood of Xy . It is easy
to see that this equivalence relation is compatible with
addition and multiplication, such that the set of equivalence

classes constitutes a commutative algebra.

Vectors. We shall define the concept of a vector, or a Langent
vector , at the point x, € X . To illustrate the definition,
first consider the casé where X 1is an open submanifold of
"R . The differential geometric aspect of a vector v e R°
is that we may differentiate functions in the direction of wv:

For fet ”(x,xo) , define the derivative along v at_the

point X, as



Section 12 ~03~

d - o 2 ey
aff(xo+t'v)|t=0 = (v1ax1f(x) Foees + vnaxnf(x))lx=xo

= Df(xo)v .

(this definition is obviously independent of the choice of

representative f in a neighbourhood of x_ ) . Since this

o
operation, differentiation along v , is linear in f s

we may interpret the vector v as a linear functional
v: ﬂuw(X,xo) - R
writing vf 1instead of Df(xo)v .

The question is now: What kind of conditions can be imposed
on such a linear functional to make sure that it represents
differentiation along some vector ? If we can answer this
question, we have an immediate proposal for a definition of

vectors on arbitrary manifolds,

The question turns out to be very easy to answer. We simply
demand that the rule for differentiation of products should

be satisfied:

Definition. Let X, be a point in an n-dimensional

manifold X . By a vector v at X, » We mean a linear
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mapping

v: C’”(X,xo) > IR

satisfying the *product rule ”

v(fg) = (vE)glx ) + f(xo)ivg)

we denote the set

o
+h

vectors at the point X,

Obviously, D(X,x_ ) 1is a vectorsp

oo L ~ 1 -
dual to € ~(X,x.) ), the produ

r

I'he following theorem and its proof

the question on page 93 by this

=

12.1 1

-

‘heorem. dim D(X,x_ ) = n

Proof: Let ?U : U= U®* be a chart.of

i

x_ such that (for convenience) P 4(x )y = 0.
o] U o]
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The mapping
f - f°?U-1

7w - 7w

is bijective, linear, and preserves products (i.e. it is an
algebra isomorphism). Together with the similar mapvings for
smaller neighbourhocods of Xy this mapping induces in an

obvius manner an algebra isomorphism

o o
€ 7(,x) »  C(E,0)
(intuitively, this isomorphism is an immediate aspect of the
local diffeomorphism ‘PU)' Hence, we need only prove the
theorem in the case X = R© ., x_ =0,

e}

We start by proving that if a function £f on a neighbourhood

. . . . 3 9
of O has all its partial derivatives Siqf g ees axnf
egqual to zero at the point O, then

vf = O - for all v e D(:mn,o) .

This proposition follows from the fact that any differentiable
function satisfying this condition can, on a neighbourhood

of O, be expressed as

f(x) = f£(0) + .fi xifi(x) ,
1=
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where the functions fﬂ, cee g fn are differentiable and
satisfy

£,(0) = ... = £.(0) = 0.
We shall not prove this statement here; it follows easily from
wellknown results concerning differentiable functions of

several variables, see Hicks (1965), page ©6-7.

Let h; denote the function [(x;], i.e. put

Then, on a neighbourhood of O we have

i—r,
"
)
N
o
~rt
+
7]
ug
oy

It follows from the product rule that

v = £(0)(v1) + Y (b;(0)(vEy) + (vhy)f,(0)
i

F NS N\
= f(O}v1) .

But from

"
-
.
<
-
+
e
<
=
..
-
i
n
<
-

v1 = v(1.1)

we conclude that vi = O , and so, vf = O.
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- i . s, N A .
iow, for an arbitrary function f e € (IR",0), define
] b ?

new function fo by

(here and in the following it is

derivatives are evaluated at the point under consideration).
f is simply the v £ at the
o pLy
point O , i.e. the best linear to f near O
s the differential O, i.e.
at O what was 1 d
above,
or vf = vf for v = D(IR",0) .
Wt 4 { 3 A o 1 FO N N PR Epee Ym
Writing (as above) h. for the function taking x into the
i’th coordinate, we have
, d - — 3 s
vE = vfC = v(}, (5= ©)h,) = (3% i)vdi .

Writing

we have then
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This equation proves that the vector v 1is a linear combi~-

nation of the functionals

These functionals are obviously vectors (the product rule

being satisfied) , and they are easily seen to be linearly

independent (just insert h,l 4 ese 5 h_ ). This proves the
ii

theorem.

. . L W . ) ~ R
Identification of IR with D(IR ,x_.) . The vector
wWivn o
) Y P JERAS o} N
v = v1=5§1 e 4V e € DCR™,x,)

n

can be regarded as differentiation along the vector

TS o 33 ‘oz s . . ¢ i \ . <
This identification of vectors in D\IR‘,XO) with elements
of M was the heuristic starting point in our definition
. . . . . PR o . . ]
of a vector. The identification of Daim‘,xq) with 1R
AS

is defined by the formula
. Y
vf = Di(xgjr

where Df(xc} denotes, as usually, the matrix
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<
axn

£ -'
-
-

' ; . . h
The usual base of vectors in IR" corresponds

J 3

(under the identification) to the base qu s ees gin
' ns w4 b
for D(R ,x_) .

Let X and Y Dbe manifolds of dimensions

n and m , and let
t: XY
be a differentiable mapping, For a vector v e D{X’XC; s
a linear functional
(- Vd AN
v o (Y, e(x ) - R
o)
is defined by

This functional is obviously a vector at the point +(x_).

We write

M

for this vector. This defines a linear mapping

Dt(xo): D(X,xo) - D(Y,t(x_))

(o]

called the differential

of t at the point Xy o
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Notice, that in the case of open submanifolds X of r"

and Y of " the definition coincides ﬁith the usual '
definition of the differential, under the above identification.

of TR with D(X,x,) (and,similarly,of R® with D(Y,t(x)) ).
This is proved by means of the formula for differentiation

of a composed mapping: Tor g e ¢ eo( IRm) and for J=1,...,n

we have
(Dt(x_ )2 ) 2 (get) e g
AL ST SCUIIE TR
. 3 L T
i.e. Dt(x ) = o = .
¢} 5xj i=Z1: 5xj ¥4

t.
Thus Dt(x_) has the matrix (( 3—1)) with respect to the
o X5

bases
2 £ o pxxy)
1 sl
and KR d of D(Y,t(x_))
‘ ayq g see o ﬁm s o .

The rule for differentiation of composed mappings is also
valid on »abstract ” manifolds; the proof is trivial,
because the concrete aspects of the rule are included in the

argument above:

12.2 Theorem. Let X, Y and Z be differentiable

manifolds, and let
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commutes, i.e.

Es(yo)oﬂ

-101-
t: X Y
and s: Y= 2
be differentiable mappings. ILet X, be a point in X ,
and define
::‘tX\
Yo (x,)
z, := s(y,) .
Then, the diagram
Et(xo}

(e
t\}‘..c," ®

Proof: For

(Ds(y

74 (Dt(x, )v))h

he 6 ‘O(Z,za)

and v €

(D(s»t)ixa)v)h

(Dt(x,)v)(hes)

D(X,x.) ,

e
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Regular mappings. A differentiable mapping is said to be

injectively regular at the point Xy s if the differential

Dt(xo): D(X,xo) - D(Y,t(xo))
is injective.

Correspondingly, © is said to be surjectively regular at %

if the differential is surjective, and bijectively regular

at X, if the differential is bijective.

For short, we may say that a mapping is regular at a point,

since the relevant type of regularity is determined by the
dimensions of X and Y . Regularity simply means, that

the differential is of maximal rank.

A mapping t:X-» Y 1is said to be regular if it is differen-

tiable and regular at all points of X .

Existence of local inverses.

12.% Theorem. Let X and Y be manifolds of dimensions

n and m , respectively. Let +t: X— Y be regular at
x, , and put 7y := t(xo) . Then
(1) For n3zm (i.e. for t surjectively regular at xo)

there exists an open neighbourhood V of Yo
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(2)

(3)

-103-

and a regular mapping s:V- X such that

For ng¢m (i.e. for t injectively regular at xo)
there exist open neighbourhoods U of X, and
V of Y5 and a regular mapping s: V- U such
that

set = 1U .

For n=m (i.e. for t bijectively regular at xo)
there exist open neighbourhoods U of X and
V of Yo such that t maps U diffeomorphic

on V .

Proof: 1In view of the local character of the theorem, we

may restrict our attention to the case where X and Y ar

open submanifolds of ] and 1?1, and X, = 0 and Yq

The general version of the theorem follows by a suitable

local charting.

Under these special assumptions, the statement (3) is a

wellknown result from multivariate analysis (the inverse

e

G.

mapping theorem). The propositions (1) and (2) are proved

by means of (3) :




Section 12 ~108 -

Proof of (1): Let L be an m-~dimensional subspace of R,
complementary to the (n-m) ~-dimensional kernel of Dt(0).

Let

ET 3

be some linear parametrization of th L , and let

el
(03]
n
jort
(o)
w
T

e
l¢]
(0]

be the restricti of r to W_ =1 ~NX). The composed

)
(o]
vy
3

mapping

is then regular at the point O . According to (3) , ter

maps some neighbourhecod W of O diffeomorphic on an open

set VoY . Let (fter) ' : V- W denote the inverse of that
diffeomorphism. Then, for

we have tes = 1V R




s
. Y
l®)
L2

£

{
]
J
J
)]

1nverse

of

ion

ey oy de
SCILCT

T"eo

»q €

oy
f-]
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Local existence of "supplementary mapping. .

42.4 Theorem. Let X and Y be manifolds of dimensions

n and my , and let t: X-= Y be surjectively regular
at X, (thus njym ). There exists an open neighbourhood

U of LN and a surjectively regular transformation
s:U-> BT

such that
(t,8): U= ¥xRET®

maps U diffeomorphic on an open subset of Y xR

Proof: As in the proof of the previous theorem, we need only
consider the case where X and Y are open submanifolds of
E" and B, and x, =0 and t(x)) = 0. But in that

case, we can obviously for s take the restriction to X of

a linear mapping S,¢ B » R , with the property that

DE(0)
( B -5 ®'x ®ET

%o

is bijective (i.e. 'S, maps the n-m-dimensional kernel of

Dt(0) surjectively onto R ).
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Submanifold, Let X and‘ Y0 be manifolds of dimensions

n and m. By a parsmetrization, or an imbedding

bt Yo-9 X

we mean an injective and injectively regular mapping with

the property that Yo is mapped homeomorphic onto its image
Y := t(YO).

Such a mapping induces in an obvious manner a differentiable
structure on the subset Y of X . Equipped with this struc-

ture, Y 1is called an m~-dimensional submanifold of X , or

an m-dimensional surface in X (for m = 1 : a curve ).

Thus a submanifold is the image of some imbedding. This
terminology indicates that the differentiable structure of
a submanifold is independent of its parametrization, as the

following theorem shows:

12.5 Theorem., Let X , Y1 and Y2 be differentiable

manifolds of dimensions n , m, and my and let

t1: Y1 - X

and t2: Y2 - X

be imbeddings. Suppose that
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t,](Y,]) = t,5(Y5) .

Then, the bijective mapping

is a diffeomorphism (and,in particular, m, = m2) .

Proof: It suffices to prove, that for any point vy, € Y,l

the mapping tz-qot is differentiable in a neighbourhcod

/'
of Tq . The same argument then applies to the inverse mapping

Put x = tq(yq) , and let s: U-9~V2 be a local left inverse
(theorem 12.%, (2) , page 102-10% ) of t, . For yieV,,

we have
-1
tym et (y3) = set,(33)
i.e. t,7let, coincides locally with the differentiable
mapping sot1 . This proves the theorem,

The thedrem shows, that the structure of a submanifold Y

of X 1is determined by the structure on X . Hence, it has
a meaning to say that a subset ¥ of X 1s a submanifold
of a certain dimension., The dimension is determined by the

subset, except in the trivial case Y = ¢ (the empty set
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is a manifold of any dimension).

It is not hard to prove, that the submanifold—property is

of local character, in the sense that Y ¢ X is an m-dimensional

submanifold if and only if any point of Y has an open X-
neighbourhood U such that UNY is an m~-dimensional sub-
manifold of U . The differentiable structure on a set Y
with this local manifold-property ** is simply defined by
the union of the atlases on the manifolds YNU., It follows
from theorem 12.5 that this " piecing together ™ is possible

{(the constructed atlas becomes consistent).

Notice that a submanifold of a submanifold of X can, in

the obvious manner, be regarded as a submanifold of X .

Notice also, that an n-dimensional submanifold of X (n =

dim X) is simply an open submanifold, as defined on page 91.

Level surfaces. :

12.6  Theorem. ILet X and 2 be differentiable mani-

folds of dimensions n and n-m , and let
s: X—= Z

be surjectively regular. Then, for z, € Z , the level

surface
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. -1
Y := s (zo)

is an m-dimensional submanifold of X .

Proof: Let X, be a point in Y , U a neighbourhood of
x (relative to X), such that there exists a » supplementary
transformation » (theorem 12.4, page 106) t:U-> R", i.e. a

surjectively regular mapping t such that

(s,t):U - ZxR"
maps U diffeomorphic on an open subset U,l of ZxWR™ .
The mapping (s,t) takes V = UnY into the set

v, = U0 ({2} xR .
This set is easily seen to be an m-dimensional submanifold
of U1 . Since the concept of a submanifold is obviously
invariant under diffeomorphisms, we conclude that V 1is a
submanifold of U , and this proves the theorem (cfr., the

above remarks about the local character of the submanifold-

property).

Remark: Theorem 12.4 and the arguments above require, of

course, that the obvious definition of a product manifold

(here ZxTR™) is applied (definition by » product charts ).
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The geometric interpretation of D(Y,xo). Let

j: Y =» X

denote the imbedding of a submanifold. For a point x, € Y ,
the differential
DJ(XO) : D(Y,xo)-» D(X,xo)

is an injective linear mapping. We shall regard the diffe~

rential as an imbedding of a subspace, i.e. we identify

D(Y,xo) with a subspace of D(X,xo).

In the case X = IR” (where D(X,x,) = R®" ), +this identi-
fication has a very simple geometric interpretation: The

affine subspace Xy + D(Y,xo) is simply the tangent space

for the surface Y at Xge For this reason, vectors are

sometimes called tangent vectors (also in the abstract case),

and the spaces D(X,xo) are called tangent spaces.

Notice that the tangent space for a level surface Y = s'q(zo)
is simply the kernel of Ds(xo) , under the conditions of
theorem 12.6: If j denotesthe imbedding of Y , sej is
‘constant, and so D(s-j)(xo) = Ds(xo)ODj(xo) = O ; this
proves that D(Y,xo) = Im(Dj(xo)) < Ker Ds(xo), and a
consideration of the dimensions shows that this inclusion

must be an identity.

The functor D . Suppose that some commutative diagram of



Section 12 -112-

differentiable manifolds and differentiable mappings is given;

for example

el

A 4

ot
€
N —— X,
H

Furthermore, let there be given a point in each manifold

such that the mappings take these points into each other:

(X,x) P W,w »

) vy = t(x

| 1
ti ir z = s(y)

v s l w=r(z) = p(x).
(Y,y) — - (Z,2)

In terms of category theory, this is a diagram in the category

of differentiable manifolds with base point (and *base point

preserving » differentiable mappings as homomorphisms).

Now, replace the manifolds in the diagram by their tangent
spaces (at the selected points) and the homomorphisms by their

differentials (at the selected points). This yields a diagram

D(X,x) Do(x) o p(w,w)
E
DE(x) | Dr(z)

e}
~
<
]
N
e
4)]
Q\
N
e}
~
(]
N
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in the category of vectorépaces’(with linear mappings as
homomorphisms). It follows from theorem 12.2 (page 100-101)

that this diagram commutes.

Such an operation D , taking objects and homomorphisms in
a category into objects and homomorphisms of another category,
in such a way that commutativity is preserved, is called a
functor. Thus, D is a functer from the category of mani-

folds with basepoint into the category of vectorspaces.

In the following sections, this technigue of transforming
diaggrams by D will frequently be applied. In particular,
we are interested in the cases where the transformed diagrams
have certain exactness properties. For this purpose it will

te useful to notice that a diagram of the form
U7h3) e (1,5) —5 (X,x) —2 (2,2) —> ({2},2)

where t 1is injectively regular, s surjectively regular,

and t(Y) is (at least locally) a_level surface for s ,

transforms into an exact sequence
0 ——D(Y,y) — 28D 5 pex,x) 25X, p(z,2) — 50 .
In case Y is a submanifold of X , we shall write

Y €5 X
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for the imbedding (as it was done for the O-dimensional
of Y above). The identification of

D(X,x) enables us to write

submanifold ({y}
D(Y,x) with a subspace of

D(Y,x) «—sD(X,x)

in the transformed diagram.

usions ” CGe— 3 ,

incl

For an open

In diagrams, we write

T \
3 D(X,x).

D(Y,x) =
Vector fields. By a vector field on X we mean a family
(v_|x € X) of vectors v, e D(X,x) , such that the following
on? is satisfied

: ; SN
is an open subset of IR , any

In case X
has a unique coordinate representation
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) )
v = v1(x)3§1 + oee. vn(x)3§n

(where the partial derivatives are to be evaluted at the
varying point x). The existence and uniqueness of such a
representation follows immediately from the fact that

5%1 y ses o g%n constitutes a base for each tangent space
(see page 98-99). It is not hard to prove, that the above
“differentiability condition * is satisfied if and only if

the coordinate functions v, , ... , v, belong to € 7 (x).

Local existence of a base of vectorfields.

12.7 Theorem. Any point X, € X has a neighbourhood
U eguipped with n vectorfields (bx(q) )y e
(bx(n) ) (x & U) , such that any vectorfield (Vx) on

U has a unique representation

v, = vq(x)bx(q) + el + vn(x)bx(n) s

) vn € ﬁm(U) .

)
Proof: Just transfer the base 5;; g ses o EE; from some

chart.
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Local extension of a vectorfield on a submanifold.

12.8 Theorem: Let Y be an m-dimensional submanifold

of an n-dimensional manifold X , and let (vy|y e Y)

be a vectorfield on Y . Then, for any point Y, € Y,
there exists an open neighbourhood U (relative to X)
and a vectorfield (uxlxe U) on U such that (vy|yesUnY)
is the restriction of (ux) to UNY (i.e. uy = vy for

y € UNY, under the identification of D(Y,y) with a sub-

space of D{X,y) ).

Proof: Since the statement is of local character, we may
assume that X 1is an open submanifold of IR® . The vector-

field (vy) then has a unique representation

d )
Vy = vﬂ(y)5§1 + eee + vn(y)sin s
determined by
Vi(Y) = vy(hi°j)

where j denotes the imbedding of Y into X, and hy = [x], .

Locally (in a neighbourhood of yo) we can extend the functions

Vi o9 see s V, OB Y %o differentiable functions Ugs eee Uy



b
local left

inverse

0]
Q

or4

g




Section 13 -118-

15. RIEMANN MANTFOLDS.

Loosely speaking, a differentiable manifold is a space with

a local structure as a vectorspace. And a Riemann manifold

is a space with a local structure as a Euclidesn vectorspace.

Typical examples of Riemann manifolds are Euclidean spaces

(of course), and submanifolds of Euclidean spaces.

Formally, the local Euclidean structure is introduced as a

Euclidean structure of the tangent spaces:

Definition: Iet X be an n-dimensional differentiable

manifold. A Riemann structure on X 1is a mapping

x = (| %

taking x € X 1into an inner product ( | )x on D(X,x),
in such a way that the following *differentiability con-

dition » is satisfied:

For any two vectorfields (vx|x e U) and (vélx e U)

on an open submanifold U , the function

[yl vl

belongs to € (U).
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A Riemann manifold is a differentiable manifold, equipped

with a Riemann structure.

Roughly s the differentiability condition states that

the inner product ( | ), depends on x in a differentiable

X
manner., In case we are given a local base bx(1), cee bx(n)
for the vectorfields (theorem 12.7 , page 115) the inner

product ( | ), can, in the usual manner, be described by a

x
symmetric, positive definit matrix. Obviously then, the dif-

ferentiability condition means that the elements
(1), (D
Xij = (b |bx )y
of the matrix should be differentiable functions of x.

Remark: Actually, it suffices to assume that the differénti-
ability condition is satisfied for vectorfields on X , since
a vectorfieldlgn an open submanifold coincides locally with
a vectorfield on X . This follows from results concerning

global extension of differentiable functions (see e.g. Helgason

(1962), page 2-3.

Submanifolds. Let X be an m-dimensional submanifold of an
n-dimensional Riemann manifold X. The tangent space D(Y,y)
of Y. is a subspace of the corresponding tangentspace D(X,y)
of X, ahd thus equipped with a structure as a Euclidean vector-

space (by the definition of Euclidean subspace, page 65).
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This obviously suggests a Riemann structure on Y . The
following argument shows that the differentiability condition

is satisfied:

Let (vy|y e V) and (v&ly e V) be vectorfields on an open
submanifold V of Y . By theorem 12.8 (page 116) these
vectorfields can be extended locally to vectorfields on an
open subset U of X . Hence, the function [ﬁvylv&)ﬁ]y

is locally the restriction of a differentiable function, and

so it is differentiable.
Submanifolds of Riemann manifolds, in particular submanifolds
of R" , are always regarded as Riemann manifolds, equipped

with this Riemann structure.

The functor D . In case of Riemann manifolds, the functor
D should be considered a functor into the category of Euclidean

vectorspaces with linear mappings as homomorphisms.

It follows from the above definition of a sub-Riemann mani-

fold, that imbeddings
Yo d yx

are taken into isometries
p(y,y) <280 5 px,y)

i.e. D preserves arrows <——sas applied here and in section 11.
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Orthonormal bases of vectorfields. A local base (bx(“, e

bx(n) ) (x & U) is said to be orthonormal, if it is so point-~

wise, i.,e, if

(1)p_(3) 1o for A=l
(b o) =
x 1P x { 0 for itj .

13,1 Theorem., Let X be a Riemann manifold of dimension

n . Then any point x, € X has a neighbourhocod U with

an orthonormal base of vectorfields.

Proof: According to theorem 12.7 , a local base exists.

By the Gram-Schmidt orthonormalization procedure, this base
is converted into an orthonormal base, at least pointwise.
But obviously, the differentiability is not destroyed By the
orthonormalization, since the coordinates of the new basis
vectors with respect to the old can be expressed as nice,
explicit functions of some inner products of the old basis

vectors.

The geometric structure. On a Riemann manifold, many of the

wellknown concepts from Euclidean geometry can be given a

meaning. For example, the length of a curve can be defined,
and it has a meaning to say that two submanifolds intersect .
orthogonally. The concept of curvature can be defined, aﬁd
this gives rise to a natural definition of a line (called

a gebdesic) as a curve of curvature O.
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We shall restrict our attention to one aspect of the geometry
on Riemann manifolds: The existence of a canonical measure,

here called the geometric measure, similar to Lebesgue measure

on RE .
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14, THE GEOMETRIC MEASURE ON A RIEMANN MANIFOLD.

Let X be a Riemann manifold of dimension n and let
?U : U -» U

be a chart of an open subset ﬁ of X . We shall construct

the geometric measure on X as a piecing together of geo-
metric measures on charted sets, defining the geometric measure
on the charted set U by its density with respect to the
Lebesgue measure transferred from the chart U’ . This deﬂsity
should of course be adapted to the special case X = hiTe

such that the geometric measure on R® coincides with the

usual Lebesgue measure. We define

g: U -5 IR
by
(x) ’
glx) = - s
1D @yl
and put

Ag = e (P (AT

where '/\3, denotes the(restriction of) Lebesgue measure on
the chart., It follows from the integral transformation theorem
that this definition yields the restriction of Lebesgue measure

to U in the special case X = R". We have IDey(x)| '+ O
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. n
D?U(x). D(X,x) -» R

is bijective ( Py is a diffeomorphism). Furthermore g is
continuous {(and even differentiable) since the determinant
can be expressed as a sum of products of elements of the
matrix for B(PU(X) with respect to local orthonormal bases
on U and U’ (theorem 13.1, page 121).
In order to prove the existence of a measure ﬂx on X such
that ﬁw is the restriction of 4, to U for any charted
v o
set U , we must prove (according to theorem A 10 , page 340
that the measures RU coincide on overlapping sets. Thus
for ﬁU and ﬁn defined as above by the charts
J < U
] [ ==
: U, > U
H '
, ¢ U, U2
Pu, + Y2 > %
we must prove that
A { A
At T 1T = /\ T T
"T"glU'TQQ?} Jg‘u ﬂbg .
Now let
P, : Jqﬁvg—a W) o= ¢U1§Uqﬂ32)
d : U.nU Wy == - (U.nU
an Py = UUx> W3 Pu,,(U4NU2)



denote the restrictions of <FV and ?Tl , respectively.

U Uo
Then
-1 r
Are lor ~vr = . 0 ! Ty ) )
U, 'U,n0, g1 (P (Ayn))
i < |
3 4 | _ “174 0
ana "_‘,7/ f\b - {«“) (?:‘, ';\ WA/
2 172 - 2
T - A 1D - . . -
where QE, and Aya denote the restrictions of Lebesgue
% W)
measure, and the two densities g, and g, are defined by

Bl iD ?2()()!

According to the integral transformation theorem we have

A1

being a diffeomorphism d% > W)y)

o -1 n _ n
(?2 (F/»’ )(ﬁw:}) = d‘9\wé

where
4]

|D(@ 5o ?1-1)( P4 ?2-1(‘%)))'

d(wé) =

1 1

g9, Cwp))] 19,7 @ (P, Wi
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S A COREE A PO

i.e.
1 &2 -1y, 4D
( rY =-iN/ X..l Y - ((-——)D ).//\‘1
/4 - \ 9y ©
(¢2° % W Vg P2 W3
This is an identity between measures on W) . Transforming
=S
-1 .
both sides by 1?2 " we get

—4],’ F O RN Y:L? e "J‘! A Loy
\?,l '\AN:/ = g \(F? '\.uw-;,/'

Y

2

-1, .1
IEE )
o]

[

s (@A) = e (@,
81 (@q (Ay) g2 (P2

o]
H

Hence, the family (A ﬂ§ U charted subset of X) 1is a
consistent family of restrictions (theorem A 1C , page 340

and so it determines a unique measure A4, on X such that

viN

This measure is called the gecmetric measure on X .
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Examples: In case of an 6pen subset X of TR® the geometric

measure ﬂx is obviously the restriction of Lebesgue measure.

The geometric measure on a two-dimensional surface in IBB

can be interpreted as the usual area measure.

The geometric measure on an m-dimensional subspace of a
Euclidean space is Lebesgue measure, normalized according to
the Euclidean structure (for example such that the unit

ball obtains the volume unit balls should have, namely that
of the unit ball in :m@). The geometric measure on an affihe

subspace of a Euclidean space has a similar interpretation.
The geometric measure on the (n-1)-dimensional unit sphere

n
S,_4 = {xe R |Ix|| = 11}
is the uniform distribution (i.e. the rotational invariant
distribution) with a suitable—normalizing factor (which we

shall compute in section 32).

Similarly, the geometric measure on a Lie group (eor a
homogeneous space) with an invariant Riemann structure is,

of course, the invariant measure (the Haar measure).
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15. DECCOMPOSITION OF THE GEOMETRIC MEASURE,

Let X and Y be Riemann manifolds of dimensions n and m
(nym) and let

t: XY

be a surjective and surjectively regular transformation., By

we denote the level surfaces for t. The geometric measures on

the manifolds are denoted 7y , QY etc.

The imbedding

is proper (or continuous at infinity), i.e. the inverse images

of compact sets are compact, Thus, for k e K (X) the

=

unction kej belongs to K (X.) and so the transformed
3y : :

measure

is welldefined (see the appendix, page %50 ). In the following

y ‘ 'y
without serious danger of confusion.

we shall write QX instead of jy(ﬁkx ) most of the time,

According to theorem 11.2 (page 75) we have
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[Dt(x)|° > o .
Thus we can define a function
F: X IR

by
/l

i e
= ISR

This function is differentiable. In order to prove that,

we notice that a local choice of orthonormal bases on X and

Y (theorem 13.1, page 121) yields a formula

D6 = ) Jdet(M(xM(x) )|

where M(x) denotes the matrix of Dt(x) with respect to

the selected bases. The elements of M(x) are differentiable
functions, and so F 1is obviously differentiable (the deter-
minant is % 0). In particular F is continuous. We define

a family ( ﬂyl 7y € Y) of measures on X by

ﬁ = F' 7\
y Xy

i.e. ﬂy is defined to be the measure on X , given by the

density F = 1/|Dt|° with respect to the (imbedded) geo-

metric measure on the level surface Xy = t'q(y) .
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15.1 Theorem.

(Ay > (A lyeD))

is a decomposition of ﬁy with respect to t (cfr.

page 36).

Proof: Obviously

supp ﬂy = supp Ay = X_ = 7 (y) .
‘ J

It remains to prove that the mapping

<
2
5

is continuous and that A, is the mixture of the measures
ﬂy with respect to ﬁv . In order to prove this it suffices

to prove that for any K (X)-function k the function

™
|

Ay (F-k)
y

K (¥Y)-function with

-
n
©

A.h = Ak .
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Indeed it suffices to prové this statement for K (X)-functions
with support contained in a small neighbourhood of a given
point Xy . The more general statement then follows immediately
by decomposition of the function k with respect to a covering

by such neighbourhoods (theorem A 2, page 334 ).
Hence, let X, € X be given and put Vo i= t(xo) . Let

Py V5>V c B’

o ,

be a chart of a neighbourhood of Yo and let U° be an
open neighbourhood of x such that t(U,) < V, . We can
choose Uo such that there exists a supplementary trans-
formation ” (theorem 12.4, page 106)

y:U, > R

such that the mapping
: -m
(‘?v; t, ¥ ): U > R'x R

becomes diffeomorphic, i.e. it becomes a chart

P, (Quie ¥ )t Uy > T g Wx W,

Now let V® ¢ R® and W° c B*™™ pe open neighbourhoods of
?vo(yo) and Yy (x,) such that the product

U? = Vxw
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is contained in Us . Put

<3
"

Py V)
(o]

g
[N}
[
]

9y

and let

v : V. > ¥
and L?U:U->U’

denote the restrictions of CPV and qu , respectively.
0 o
For ye V , we put

U_ := X .
U yﬂU

Then Uy is an open subset of the manifold XY , and the
restriction

;. ¢+ U - W

Py
y

-

C
q

of ' is obviously a chart.

We now have this ny X t > Y

y A
commutative dia-~ J J J
gram of Riemann Uy‘" > U SDEEN v
manifolds and \L‘PU;; i‘PU \!"PV
differentiable wr > U >V

mappings: [

V’x 'wl’
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The arrows of the bottom row represent the imbedding

w5 (Qy(y), w)

of the fibre W® = {cpv(y)}x W* and the projection

on the first component in the product U’

For a point x e Uv , we apply the functor

D,

following commutative diagram of Euclidean

mappings:

= \’!7 X ‘t‘]’

D and get the

spaces and linear

) n( Dt(x) nre
D(X,,x) ©&—s D(X,x) 22X, n(¥,y)
AN P \
} |
Dt(x) !
D(U_,x) & D(U,x) =X/, p(V,y)
D Py (x) D (PU(X) D qJV(y)
J v y
RO~ rD R

Here the arrows of the bottom row simply stand for the im-

bedding of second component and the coimbedding onto first

component in the product space R = R'x BT,
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The lower half part of this diagram (ignoring the identity
RE=———5 TR%x R®"™ ) satisfies the conditions of theorem
11.4 (page 80). Hence
1 N\ 7 3\ o]
D (x)| = [Dey(¥)||D@, (x)||Dt(x)|" .
?U ?V\ TUy |

For

v

w = (vr,w’ t= ({37\'{) = ((Fv(y),?uy(x))
we have then

1295(@5 (w1 = D@ (@7 (w2 ) (e oo N ey (w )|

L0y
——— . 10
Taking inverses on both sides and expressing |Dt] by the

N

*) D@ )| = D@ Dleg I (w ) |- Fley (w)) .
! U ?J .LV i U

Now let kX Dbe a # (X)-function with support contained in
U. According to the definition of the geometric measure we
have (with our customary carelessness about the specification
of domains, restrictions etc.)

Age = Agk = A5,(1D@F | Ceepp™)

where <Ay, denotes the restriction of Lebesgue measure to U’
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For y €V +the function F.k is, when restricted to Xy )

a 7((Xy)—function with support contained in Uy . Thus
n(y) = Ak = Ay (Fok)

¥y

= AR D] - (Fex)0 )
W "(Uy | ‘?Uy

By the equation (#) we get

n(y) = an-m['n(?6“><?v<y>,w’>|

- ; (ke ( <(),w’>]
L IO eSS o

w’

This equation shows that h is a continuous function (theorem
A 5, page 337 )., Obviously h has compact support supp h
€ V. Thus Ayh is welldefined. By the decomposition

AT, - 2%, e 257

of Lebesgue measure as a product of Lebesgue measures of lower

dimensions, we get

Ayp = AT, (IDQFH] - (nogy™))

} ] 12@F (v )] ) ’
- ﬂm,[lD 1(V’)|n»m[ —~ ko@D (v W)
tv FCFIRR) tu .
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= A0 | AT 1D (v W) (ke (v yu)
wv?

= A5 0 IpF )| -GeggM )]s = Ay .

This proves the theoren.

In case the transformed measure t( 4 v) is defined, we can
P

easily compute its density G with respect to Av , by theorem

15.1:

—
\n
n
3
5
[0
O
¥
g)
U

J"J

g

ose that het is A, -integrable for
Fis

all he K(Y) (cfr. the appendix, page 350 ). Then

4
<t

where

Proof: A, is the mixture of the measures Zf = F- 2,
— A y Ay
with respect to A, . Thus for h e K (Y) (see theorem A 22,

page 352 ) we have

t(Ag)h = Ay(het) = ﬁy[ay(hm;)]y = Ay[a(ym my}{]yzzy(c-h)k
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Notice that G need not be continuous (except when t 1is
proper, and the level surfaces thus compact). But G is

lecally ﬂY—integrable, according to theorem A 22,

In case ¥ and Y are manifolds of the same dimension

the "level surfaces ” are discrete subsets of X . The geo-
metric measure on a O-dimensional Riemann manifold is ob-
viously the counting measure (the Riemann structure is unique,
since the tangent spaces are of dimension 0). The measures

Ay thus have the form

ﬂy = mg; F(x)-sX

where

F(x) = .
| DE(x)|° | DE(x0) |

The density G in theorem 15.2 is

G(y) = xé; F(x) .

p4

In particular we have, in the case where t is bijective,

the integral transformation theorem for Riemann manifolds:

15.3 Theorem. Let t:X—=> Y be a diffeomorphism between

two Riemann manifolds. Then
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t(’AX) = G-?\Y
for
3\ ) o _/l/ A | -1
G(y) = F(GE™'(y)) = |p(t™ )W .

The validity of this theorem was more or less subsumed in the
definition of the geometric measure, and it can easily be

proved directly from the definition.
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16. CONDITIONING IN A RIEMANN MANIFOLD.

The decomposition of the geometric measure (section 15) and

the results on conditioning in a decomvosed measure space
(section 7) are immediately combined to a result about con-
ditioning in Riemann manifolds. We shall restrict our attention
to the simplest case where the densities f and g are con-
tinuous and positive. In section 17 we shall show how to trace
more complicated conditioning problems back to this case. TFor
convenience some of the formulae and results from section 15

are repeated here, such that this section summarizes the basic
tools for conditioning in the continuous case. More concrete

aspects of the theory are treated in section 17, 18, 31 and 32.

Let X and Y be Riemann manifolds, and let

t: X =» Y

be a2 surjective and surjectively regular transformation. Let

us introduce and summarize some notation:

ﬂx s ZY etc. denote the geometric measures.

1 1
F: X+ R is defined by F(x) = —_— =
R} V108D |

qy is the measure given by the dénsity F  with respect to

the geometric measure on the level surface
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J

4, = F-4 ;

X 9
7 ¥
ﬂy, and ﬁx are , most of the time, regarded as measures
J

on X .
f is a continuous and positive probability density with

respect to ﬁX . We put

The transformed measure
v o= t()

has the density

e
~~
g
N
it
=
]
-
4
N
o
Y
y

£
y

It is assumed that g is continuous (obviously, g is positive).

The conditional distribution }Ay of xe (X, n) , given

t(x) = 3 is then defined for all e Y (theorem 7.1) and
L 9
. . . 1 . .
y the densit —— + spect ¢ €.
given by e nsity F16] f with respect to ﬂy , 1.e

{

J _ 1 R - i (F.f.
M = gy sy et /’)‘Xy> :



*O
|
N p—
] ~ -+
N fan
Gy M —
~~
! Py
< ~
< &0
-
I
]
—~
N
Gt
N
o]
s
=T
s8]
O
< 0
<
o]
o
4 M
(o] e
[0 By >
0 @ "oy
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17. CONDITIONING IN A EUCLIDEAN SPACE.

<t
N
5
=
i~
(o]

-
N
-
~r

be a homomorphism,

of relevance, the conditioning proble

( M
1) Y = toiKW is an m-dimensional submanifold of IR .
(2) m( = 1 (and so v (Y) = 1).
o 0
(3) The restrictions
of to X
Mo
of v to Y
1% 0 5 o)
3 (X Y
and t.\l,}i) - (¥, v) of t,

satisfy the conditions in section 16,
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Obviously then, the conditional distributions deduced in section
16 are also conditional distributions when imbedded into I@

T .
(the imbedding J: X - I@‘ is continuous, also as a mapping

it P (X)) =P (R ).

The choice of the submanifold X can, in outline, be carried

out as follows:

suppose that Fo is given by a density f with respect to

a geometric measure on a submanifold X (it is subsumed, then,
that Po is of *constant dimension *; we return to that ﬁoint
later). In case f 1is a usual *explicit » function (piece-
wise analytic, for example) we can in general reduce the domain
X Dby a closed ﬁx-null set (the closure of the discontinuity
points for the restriction of f to X) such that f Tbecomes
continuous on the new domain X . The assumption f>0 is
obtained by a similar reduction (namely by removing the closed
set (rel. to X) {x|f(x)=0} ). We still have u = f-iy , and
now f 1is positive and contiﬁuous. The new X is cerfainly

a submanifold of ZRN, being an open subset of the original X,

In a similar manner, we can reduce X such that the trans-
formation t (assumed to be explicit ”, pieced together of
nice transformations of nice sets) becomes surjectively regular
as a mapping t:X-= Y = t(X). This requires, however, that Dt
is (essentially) of constant rank, a point which we shall
return to. A modification of Y may be neccesary in order to

make Y a manifold (removal of Y’s *intersections with it-
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self ” etec.). Finally, under the assumption that the density
g of ¥ is a nicexplici?” function, a similar reduction
of Y (and, accordingly, of X) makes g a continuous and

positive function.

The assumptions about f and g are not restrictive in practice.
All counterexamples known to me possess the unmistakable

features of being counterexamples and nothing but that.

The assumptions about t are slightly more restrictive; not
bthe pure regularity assumpbtions, but the assumption about

“essential rank homogenity **. Transformations, pileced together
of transformations of different ranks, can not always be

excluded as quite pathological. A transformation like
t: R - i
t(xq,xz) = (x1 y Xqh Xy )

has an effectively varying rank (namely, 1 for ¥ <Xy and

2 for x',1>x2).

We have made a similar assumption about the probability measure
Ko namely that M "is of constant dimension » ; but in
some cases it may be of interest to consider probability
measures of "mixed dimension », like a convex combination of

(say) a normal distribution and a one point measure.
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Such problems of mixed dimension can be handled by a division
of X or Y , followed by an application of one of the results
concerning »piecewise conditioning  (section 28). The spaces
X and Y should be divided into their components of different
dimensions, and the components should be separated from each
other (i.e. the topology should be changed) such that X and
Y become disjoint unions of manifolds of different dimensions.
We shall not go into details about this redefinition of the
topology and its consequences, Jjust notice, that if problems

of mixed dimension are really of interest (which they seldom
are) then one should be careful about the choice of topoldgy
anyway. The probabilistic structure should be reflected by

the topolegy in such a way that points close to each other

have spproximately the same meaning. An atom, untimely placed
in the support of some continuous distribution, has only little
in common with its closest meighbours, and therefore it should

rather be given its own status as an isolated point.



Section 18 T -

18. COMPUTATIONS IN BELATION TO CONDITIONING.

The considerations of section 17 showed that conditional distri-
butions do in general exist, at least on a submanifold Y of
probability 1 . Thus the conditioning problem in the continuous
case can in general be Msolved ., But the conditional
distributions are of little or no use to us, as long as their
,existence is the only vroperty known to us. The somewhat more
interesting algebraic problems concerning their computation

(i.e. the computation of their densities with respect to

the ceometric measures) will be discussed in this secticn.

In general, we are interested in operations like

intecration of a function

multiplication of a measure with a density
transformation of a measure

mixing of measures

construction of product measures

and conditienine.

We begin by a short outline of the problems invelved:

Integration of a function will be discussed later, as one of

the two "basic  operations.

Multiplication DPY a density does not in itself imply further

difficulties than does the general problem of integration.
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Transformation (by a dimension preserving or dimension reducing

surjectively regular mapping) is carried out by the formula

ey) = Ay (F-0)
y
for the density of the transformed measure (section 16). In

order to compute g , we must compute the function

1

F = R
o | D5 (x)|°

(i.e. we must compute the determinant) and then integrate the

function ¥F.f with respect to the geomebtric measure “X .
v

Mixtures of measures usually appear either as mixtures of
measures given by densities with respect to the same geometric
measure or as mixtures of measures concentrated on disjoint
surfaces in some continuous family (or »fibre bundle ) of
surfaces. The first type of mixtures is a trivial matter
(just *mix » the densities, i.e. integrate the Ymixing
variable  out of the expression for the density). The second
type of mixtures can be handled as »inverse conditioning
problems > where the measures lly and Vv are known, but /L
is unknown. The density of the mixture is then given by the
forpgla 7(x) = §%§7F(x)f(x) , written on the form

g(y)
F(x)

f(x) = 7(x) .
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Thus the only technical problem in connection with this mixing

procedure is computation of F (i.e. of the determinant D8] 9).

Construction of product measures does not involve new problems.

Under the obvious definition of product Riemann structure, the
geometric measure on the product manifold equals the product
of the geometric measures on the components. Thus the density
of a product probability measure is simply the ( "tensor M=)

product of the two densities:

where

feg = [f(x)q(y)]<x,v> .

Conditioning. Conditional distributions are given by the

density
. F.£

= e {section 16)

e(

S~

with respect to the geometric measure on the level surface
for t. 'he technical problems coincide with those of a

ransformation: Computation of F =2nd g .

Hence, it seems as if the basic operations are integration

of a function with respect to a geometric measure and ¢com-

putation of a determinant of the form |Dt(x)|°. 3By means of

these two operations, all those above can be carried out.
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Therefore, we shall discuss these two problems in more details.

Integration of a function. Theorem 15.1 (the decomposition

of the geometric measure) may, of course, be of help in facing
the problem of integration of a given function. Classical

tools like transformation into polar coordinates, nof to mention
Fubini’s theorem, are typical examples. However, only little

can be said about this technique of decomposition in general.

The basic, straight forward method for computation of integrals
is, of course, a choice of parametrization, possibly piecewise,
transforming the integral into an integral or a sum of integrals

with respect to Lebesgue measure on &",

The decomposition of the integral as a sum of integrals over
open subsets, covering X except for a set of measure O (a
union of closed manifolds of lower dimensions) requires no
explanation, so we shall restrict our attention to the case

where a parametrization

t: X = X
of X by an open subset X of R" exists. We have then,
by the definition of the geometric measure (page 123, section
14)

Agf = Ay (D8] (1)),

where ﬂx denotes the restriction of Lebesgue measure to X’.
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This formula yields a new problem: Computation of |Dtf.

In case X is a submanifold of RN , we may write |Dt|o
in stead of |Dt|, if t 1is regarded as a mapping with co-
domain ]RI: (the tangent space for X 1is then identified with
the image for Dt(x') and theorem 411.1, page 73, is applied).
From this voint of view Dt(x’) is then a linear mapping

|

DE(x?) : TR o R,

and the determinant is civen by

ID6(x] = Vs e = Y/ det((a; )]

where 2, (x7) 3t (x) 3ty (x7) dy(x?)

a. . = . + see T -
1J 3 3
éx{ Bxs axi 5xj

<3t(x’) ‘ dt(x?) )

X! X3
bl 33

This is all we can say about computation of integrals in general.
The resulting integrals with respect to Lebesgue measure may,

of course, turn out to be rather complicated, and for n=>3

the computation of the determinant may also be a rather hopeless

affair, but these problems can hardly be avoided in general.
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Computation of the determinant |Dt(x)|°. Let X ¢ =Y ana

I c me be submanifolds of dimensions n and m , respectively,
and let t:X—> Y Dbe a surjective and surjectively regular

transformation., We have

ID6(x)|° = [/ |De(x)De(x)¥] .

A direct application of this formula is possible if we are
able to »compute * the adjoint mapping pt(x)* , compose it

with Dt(x) , and then compute its determinant.

In case X and Y are open submanifolds (n=N and m=M),
this is, in principle, easy. Similarly to the computation of

the "injective determinant |Dt|° on page 150, we get

[pe(x)|°® = Y |det((bij))|

where )
ot (x) . btj(X) .

3ty (x) At (x)
b. .
1d d %, Ix, dx

I,

n
= (grad t,|grad tj) .

For n<N or m<M , this method can not be applied. Not
even the adjoint differential Dt(x)* can be™computed” in any
reasonable sense if no orthonormal bases in the tangenﬁ spaces
are given. An artificial choice of orthonormal bases is in

general a rather hopeless affair.
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We shall illustrate a technique, based on theorem 11.5. In
short, the technique is this: Construct a aiagram, satisfying
the conditions of theorem 11.%, containing Dt as the only
mapping with unknown determinant. Thus the remaining linear
mappings of the diagram should be mappings between spaces

]Rn

s Kfletc., or their determinants shculd be otherwise
computable. This technique turns out to be very efficient,
though hard to describe in general. OSome ingenuity may be

of help in the choice of diarranms.

Some more or less relevant cases are discussed below. It
should be emphasized, that these cases are examples. It is
probably ﬁrue that all situations where X and Y are given
as level surfaces or parameterized surfaces or combinations of
such can be treated by a combination of the five cases below,
but it may as well be easier to apply theorem 11.5 or some
other result direcsly. Even in the four cases 1-4 treated
nere, I surrest that theorem 11.% is applied directly. Exact-
ness and commutativity of a concrete diagram can easily be
checked, Theorem 11.5 is, in spite of its rather abstract
algebraic formulation, a very simple and useful result, which

T hope will be illustrated rather than obscured by the examples.

In the following, the spaces Xo s YO etc. may be regarded as
the spaces IQI, K# etc,, that is we assume that determinants
of mappings between these spaces (with subscript o) are known.
In all cases, X and Y are given as gubmanifolds of Xo and Yo s

and t:X-» Y is surjective and surjectively regular. The
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Case 2. DNow, let t: X-= Y Dbe the restriction of a surjec-
tively regular mapping tO: Xo-e Yo , where Y 1is given as

a level surface

PN . .
Y = s (v.) s : ¥ = V sur]

while
=1/
Y o= A - + vy
X = = 7 Y
_ l¢e
is the corresponding surface in X. Obviously then, t 1is
surjectively re "

+ (v) == 5 % v b—— {V }

S ¢« U
;o , O o 5 17
Y o3 X , >V
C 0

+
.
~
<

(this time we shall

1 3 e e - 1 - nivy {
d » diagram; Jjust apply the remarks
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4 NP ( o] s O o]
101291+ Dt ()| 7+ D5 (3017 = 1-1+|D(s et )(x)]|°-1+|DE(x)]|°-1
or o o

(
o iDtO\xﬁl leo(y)!
| Dt(x)| = 5 .
[D(sp t,)(x)]
Case 3. Let Y ¢ YO be given, as in case 2, by
v -1,
t = s, (v)) .
But now we assume that further restrictions are imposed on x e
(as in case 1) such that X is given as the level surface
v _ 7 L \""i/ AY Y “"\ Y
X = \Soa uO) "‘VO} n I‘O )
. . —r :
= (spty » T,) \vo,uo) .
As in case 1, we assume that (to,-o) is surjectively regular.
that {Sd>to s rc} and t are
For yeY , consider the diagram
t (7)) = (t,r )7 (¥,u ) b—— {(v_,u )}

1¢

! A

X < , x50 %o%o)
: o 0
t| (t_,r )l

v o’ o (= x 1y )

Y G5 Y xU 0V,

k]
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Case 4, Case 1,2 and 3 cover most of the situations where ¢

is given as the restriction of a surjectively regular mapping to.

In case to is not surjectively regular (for example, when

N '/
Tyt B ® maps IR~ onto some submanifold Yg ®' ana

T
t ]RI‘ - Y is the restriction), a formula for *reduction

of codomain »” may be useful,

Suppose that the image Y = to(Xo) can be represented as a
level surface

-1
Y = 54 (vo) s
Syt Yo - Vo surjectively regular.
Consider the diagram

Ker })t(x)-———> Ker[Dto(x) Dso(y)‘] R e I
N

A2 v

X ,x) C—m——o—> D(Xo,x)x D(Vo,vo) ) D(Vo,vo)

o}

D(x) [Dto(x)  Ds (3] Ds (y)Ds (¥)*

v l« Dso(y) f
D(Y,y) < > D(Y_,¥y) > D(V,,v,)

(for the definition of [Dto(x) Dso(y)*] , See page 61).
[Dto(x) Dso(y)*] is surjective since the image of Dso(y)*
is a complement to the image of Dto(x) (namely the orthogonal

complement). From this it follows (since Dso(y)* is injective)
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that

Ker(Dt(x))x{0} = Ker[Dto(x) Dso(y)*]

Hence the conditions of theorem 11.5 seem to be satisfied

and we get

-
-
.
N
JN
.
Lo}
s ]
ct
g
"
S
lw)

so(¥)"11°+ s (3)1°

| Dt(x)| %1

= ’,M}.’}.%Ztt (v)Ds \")*I: .

or T PR - » o)
| [ot (%) dso(y) ][

INe (w)10©
U .y
i DO )l

In this formula, Ds{y) may of course be replaced by any

other surjective linear mapping with D(Y,y) as its kernel.

7, consider the case where X and Y are

1 ¢
0
[#]
(]
9
o]
Q
F

N\

p.: X X s X = (X))
Pot o ’ Pt %o

N~

and g_: Yé - Y S Y = q (Y

Let
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denote the restrictions (thus p and q are diffeomorphisms,

according to the definition of a parametrization (page 107)).

-l
k] . '
tc t= q +etep
is assumed to be known » This time we shall not apply
; p . . . | N1 O .o
theorem 11,5, The determinant }Uf(£;§ can be computed as
follows:
o ¢ =T i
For y:=t(x) , x2:=p” (x) , J2:=q () , put (for con-
venience
T := Dt(x)
e Nl <?
Q := Dqa(y?)
P := Dp(x?)
3o
ms T2 3 »\""!mg
L = UT2(X1) = 14} LB .
o "o

Then

Lo
\rf
&
N
o
n
3
O
]
LD
L=
O
rd
i
-
Q
§
L
3
O
lai]
[
+d
»
3
*
O
*

v 1eki (2R ¥ Q¥

W

i mapFpY = Tme*
CINAERES S I
By theorem 11.1 (page 73) we have

Q= IDal = IDe,(z ), -
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Further, P*P can be computed as follows: Let Jj:X- XO

dencote the imbedding. Then

since is isometric for J := Dj(x) and
- 14 R D TDY
P = ({ana ¥ = i)
o 0
. N »
P*P = - (P*JP = PFP_.
‘lence

folds is motiv-

ated by the occurrence of submanifolds of IR without any
natural parametrization, and such surfaces are in general

given as level surfaces.



T - 3 h'd -
case, Let 2 Y Dbe
o ey ey =) : - A - - ] g
measures #H and V s and let
7~ . 7 \
B (X, U - (Y, v )
/

[}
i
e
i
s

(defined for vi{y}> 0, i.e. for y e supp¥ ).

aspect of the concept of

the local definition of a conditic

1

The elementary concept of conditioning in the finite case has

however, other aspects. One of them is the following:

Let

3
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be a function, and suppose we want to determine its value
£f(x) (as good as possible) from an observation of the derived
stochastic variable

y = t(x), x e (X7F ) .

®)

C
o
H
@®

Fh
4

he ssed by inner products
‘ - . 2r 03
in the Euclidean vectorspace L"(u):
A o A > A A
s/ o | A Pt [P \
~£(¥)) = £ - fet||5 = (f = fet|f - fot),

projection of f onto that subspace. Hence, the difference
f - f»t must be orthogonal to the subspace, i.e.
, A
(f - fvtigot)r = 0 for all g
, A 3 AN -
or (flget), = (f-tl‘"ot)f4 = (flg), for all g .
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In particular, inserting g := Ty (W eX), we get
LT
A
4 AY :‘p
" ) 1y
ik = gy,
or
{ RN { }
o £((x) pix}p = £f(y) viy
x e t” (y)
or (for vi{y}> 0)
2
A \ ! 7\ Yy
f(y) - — > f(x) /}J{/:} = pIL o
viy} 1 )

xet” (y)

best estimate (in the quadratic mean-sense) of f(x) 1is the
expectation of f(x) when x is varying according to its

. . z s . Y 3 ad
conditional distribution Pf » given the observed value of .

o
This connection between the geometry of the L“-spaces and the
concept of conditioning can be stated in a more precise manner,

as follows:

The equations

A
(f!gotb‘ = (flg), gel

A
express that the mapping taking f into its estimator £
is the adjoint mapping to the operator taking g into get
The latter is denoted
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) + 1) = P
L2(t)g = gob .
Hence, what we have proved is that the adjoint operator
Lz(t)*: Lz(r) - Lg(v)
has the pointwise representation
e ey = pTr .

. . 2 * .
“or this reason, the operator L1°(t) will be called the

conditional expectation operator.

Remark. The notation Lg(t) for the linear operator induced

by t indicates that we have to do with a functor; which we
have, actually: L"9 can be regarded as a functor from the
category of probability fields (here: Finite probability fields)
into the category of Hilbert spaces with bounded linear mappings

as homomorphisms., But the functor is contravariant, i.e. it

reverses arrows. Thus

() —E— (v,

is transformed into

2
1P (p) 5 120y
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Now, the category of Hilbert spaces is contravariant isomorphic

to itself Dby the adjointness functor * | taking objects

(Hilbert spaces) into themselves and homomorphisms (bounded linear
mappings) into their adjoints. Composing the adjointness functor
with L2, we obtain the covariant (i.e. arrow direction pre~

serving) functor L2* , the conditional expectation functor.

Definition of conditional expectations. While the local

definition of conditional distributions required some regularity
conditions, the above quadratic mean aspect of conditioning

is immediately generalized:

Definition: Let

e (X,F)-9 (Y,v)
be a homomorphism between probability fields, An isometry
I2(t): 2v) - 1w

is defined by
L2(t)g t= get .

The adjoint operator

f(6)* 12 - 120)

is called the conditional expectation operator, and for
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f e L2(F) , the function (or, more precisely: the

equivalence class )
I2(6)r e 12(v)

is called the conditional expectation of f | given t© .

Properties of conditional expectations.

19.1 Theorem, The operator Le(t)* has the following

properties:

-

‘he composed operator

)

A ED S COMIEIS Sl (T I ST

(taking f into its conditional expectation regarded as
a function on X ) 1is the orthogonal projection onto the
subspace

{get|e e L2(W)} .

o]
(2) ()1 1 (here, 1, and 1, denote
X Y X Y

indicator functions, of course).




Section 19 ~169-

(3) v(zAe) 1) = pr .
(3) £ 0 ==  12(:¥*r » o .
(=) 1222l < Hiell,  Cor I22(6)"2 ]|, < [ENE

see page 344 ).
© I e, € e, .

2
(7) NZe(e) s | o < HEll o (nere, || || « denotes,
of course, essential
supremum norm., The inequality is also valid

in case one of the sides equals =+ ®).

Proof: (1) follows from the fact that L2(t) is isometric
(for any isometric operator T between two Hilbert spaces,

¥ is the orthogonal projection onto the image of T).

(2): TFor ge L2(v) we have (L2(t) being isometric)

(6Tt 1), = (T2(D)glg), = (TA(6)E|TP(6)1y) = (&),

This equation being valid for all g , we conclude that

2 *
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Then .
12, = y(TP) e € v (| g]))
S E PR TP
(6) is easily proved (by the formula (|T¥|]] = ||| , or
directly).

(7 is a consequence of (2) and (4): For f & L2(p) we

have

el gy € £ o< it o1y s

and so
2

el ety € LR € I ey s

i.e.
27 \¥

This argument holds for ||f]| ,< +o , and for ||f|| o =+

the assertion is trivial.

Remark. It follows from (5), that the operator Lz(t)* can

be extended by continuity to an Lq—operator L(p) » L(v) .

This means that the conditional expectation of f can be defined
as soon as f 1is integrable. This can be done directly (i.e.
without going through the Lz-case first), and that is the way

it is usually done in the litterature. The self-duality of

Hilbert spaces (necessary for the definition of adjoint operator)
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is then replaced by the more special Radon-Nikodym theorem.
The description of the L1—operator is, howéver, a much more
complicated affair, and the close analogy between geometric
and probabilistic structure (see for example thecrem 25.1,(3)
page 21C ) is completely obscured by the Lq—definition.
Though it may possibly be of interest in some cases to con-
sider a conditional expectation of a stochastic variable with
infinite variance, 1 think that the L2—definition should be
applied in gereral, in view of its canonical and unavoidable
character: It arisesalimost immediately, when the L2-spaces
are considered., DNotice that (seemingly basic) concepts like

variance and correlstion are closely related to the L2-spaces:

The standard deviation (the square root of the variance) of

a stochastic variable f{x) 1is simply f’s distance to the
one~dimensional subspace of constant functions, and the
correlation coefficient for two stochastic variables fq(x)

and fg(x) is the inner product of the normalized vectors
f1/|lf1||2 and f2/||f2I|2 after subtraction of their constant
components (i.e. after projection onto the orthogonal complement
to the space of constant functions). It seems natural, that
these measures of dispersion and dependence should be related

to a geometry which reflects the basic ideas of stochastic

independence (theorem 2¢.1) and conditioning.

The connection to conditional distributions. We have now

given two different generalizations of the elementary concept
of conditioning in the finite case; The local definition

of conditional distributions, as handled in the previous
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chapters, and the global definition of conditional expectations,

as given in this section.

In the classical theory, only the global definition has a
meaning., Conditional expections (in particular conditional

probabilities defined as conditional expectations of indicator

functions) were introduced by Kolmogorov (1933). The only
local aspect lies, within the classical theory, in the possible

existence of a pointwise representation
2o NF v
T G - e

of the conditional expectation operator. This was Doob’s

point of view, see Doob (1953),

In our eprsition, both sides of the above squation are meaning-
full, and therefore we must prove it, in some sense. The left
side is, however, only defined up to equivalence. Hence, the
equation can not be quite trué. In order to ascribe pointwise
meaning to the left side, we need a definition of the value of

a function at a point, in case the function is only given up

to equivalence. This is the justification of the next section.
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ESSENTIAL

be an

ONTINUITY.

arbitrary measure on X and let

f: ¥ I
N . -~ . N . - N\
be a locally interrable function (cfr. the appendix, page 350 ).
Let x_ be a point in the support of A .
o
: If the net

gent to r (f+ro ), we
f has r at the point x_ .

?& i“i
.
Yotice, that the essentizl value is unchanged when f 1is
changed on a set of wre C . The essential value (and
its existence) depends on the equivalence class only.

to

lemma
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its
~ . = r "}
f an 1 : - |~ ,+© |
which we call £
-
{ / N
. i § ()
:=  supi{g(x)i
g < f almost everywhe:
fix, i=

o+

betwee

znce of

v

1 Cheorem. The functions £ the foll

£ is
f is

For almost all x we have

£

N

x) € f(x) £ ¥F(x) ,

and the inequality
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£(x) € T(x)

is valid for all x e supp A , while for x ¢ supp? we
have

£(x) +® and f(x) = -w .

Proof: The semicontinuity of the functions £ and T follows
immediately from their definition as upper and lower bounds

of sets of continuous functions.
In order to prove the inequality
f <« T almost sure

notice first, that we need only prove it in case of a bounded
function f20 with compact suvpport. Then the o-compactness

of X obviously ensures that the statement holds for arbitrary
bounded functions 2> 0 , and the boundedness- and positivity-
conditions are not restrictive since we may replace the inter-
val [-o,+®] by [0,7] by means of some increasing homeo-
morphism ¢ : [-®,+®] - [0,1] (obviously, ¢ commutes
with the constructions _ and = , in the sense that @of

= tp°£ etc. ).

For a bounded function f£2 C with compact support the function
T is obviously integrable. Moreover, there exists a function

g e K (X) such that g3>f (theorem A 1 , page 334 ), It
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follows from theorem A 13 (page %44 ) that

such that g _ > f almost everywhere and

mi, £ { ~ 3y { o ¥ r
.1en, 10T g (X)) = 1lim ;’:;”’\7’.') we nave

g (x) = T(x) almost sure,
and from
gp(x) > f(x) almost sure

-

. P - . - 7 - - . - ..
it follows immediately (since a denumerable union of null sets

g (x) 2 f(x) almost sure.

Hence,

2]

= g, 2 £ almost everywhere.

The inequality £ < f almost everywhere is proved in a similar

fashion.

Now, put
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o - N o/ AY Flrw N N 1
hi (x. ) = f(x_ ) (=1 )
ess "o’ =*"o” x( o’ /* l
suppose that f has the r at
X . For &€ > O we can choose an open ne: U of Xo
0
with compact closure such that for any open subset A of U
with 2A>0 we have
A ‘f‘,,°_’.:\?
{* b - — 1 i < .
” » ~
2 A
sly then, 5 inequality holds for any set
AcU with 24 > C , since any measurable set can be approximated
in measure from the outside by open sets (theorem 4 , page
548 ). In particular, the set
; e .
L := {xelUl flx)< r -& }
be a If this was not the case, we should have
q(\/lA’f) IA(/‘A’(‘I =& ) }
£ = r - & ,

contradicting

Now let

.
e

be a continuous function such that

X [-o,+ o]
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g(x) = -o® for xe X\U

Q
ct
-
(o]
=]

xistence of such a fun

l;
o
(4]
[¢/]

A 1 ., Obviocusly we have

g < f almost everywhere

1d by the definition of £ we conclude that

,
3
Q8
r
m
\%
O
=
D
&)
<
]

and from the (similarly proved) inequality
N 4 i * v

and , we conclude that
(v Y = T = 7 = f (% )
1 X ) = X = I = i (X _ )
£ix, . f(x,) ess(¥Xo)
(x_ & follows from the assumption that £ (x_)
255

follows easily from theorem

is
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20.3 Theorem. Let C denote the set of points x such
that the essential value fess(x) is defined. Then there
exists a function
£, supp? = R
with the following properties:
(1) fo(x) = f{x) for almost all x .
AY <\ - £ \ F3 -
(2) fo\“} = ‘es€<x’ for xe C ,
(3) f_ is continuous at any point x in C (relatively
to supp 4 ).
Procf: For x & supp A we define
fn(x} 1= (f(x)v £(x) )aT(x) .

f{x) = T(x) = £ (x
=70 e’ ess®
and so from f < f < f we conclude that fﬂ{x\)
- O O Q
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Moreover, for € >0

{x e supp 4 | fO(X> e ]fo(xc) -& , fo(xo) + s[ }

2 {x e supp? )fo(xo)-e-<£(x}} n {x e supp A |F(x)< fo(Xo)+E b,

It follows from the semicontinuity of f and T that this
set is open relatively to the support; this proves that fo

is continuous at Xo .

20.4 Corollary. The mapping

x = f__ (x)

C =» IR

0]

In case supp A = X we have in particular that £ (x) i
PT ’ 1Y ess

defined for all x if and only if f 1is equivalent to a

. et (o . s .
continuous function (and this function is [fess(x)]x ) .

Essential continuity. It follows from theorem 20.3 and lemma

7.2 that existence of the essential value at a point X, is,

roughly, equivalent to continuity at that point. 1In order to

make a precise statement out of this, we shall need the following

definition:
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Definition: A locally interrable function (or an equi-
valence class of such) f is said to be essentially
f

continuous at % i X, is a point of the support and

f 1is equivalent to (or contains) a function which is

continuous at Xy o

We hava then

=

20.5 Theorem. The essential value f (x ) is defined

ess o}

if and only if f 1is essentially continuous at Xy -

Proof: The »if ™ part follows immediately from lemma 7.2.

The »only if » part is proved as follows: In case fecs(Xo>

{ f,(x) for x = supp A

£f,(x,) for x ¢ supp A

where £ is defined as in theorem 20.3. Then, f1 is equi-

valent to f , and f,l "is continuous at Xy



Section 21 -185-

21. THE CCHNNECTICH BETWEEN CONDITIONAL EXPECTATIONS AND

CONDITIONAL DISTRIBUTIONS.

=
[
ot

\ h o )
t: (X,p) > (Y,v)

be siven. By means of the concepts of essential value and

essential continuity we can ascribe precise meaning to the
o]
equation (L°(£)*f)(y) = ny :

21.1  Theorem. Let Yo be a voint in supp vy such that

the conditional distribution Fyb is defined. Then for
any X (X)-function k the conditional expectation

EIPRY . . . . ,
L(t)*k is essentially continuous at ¥ and the

essential value is given by

(T2 k), __( - pok
N ) k) egs(75) s
Proof: For Bc Y, yB >0 , we have

1 2 1 204
-7E—V(13~.u (t)fk) = W‘( /IB!L (t) K)y

‘,%(L‘?(t)’!Bik)ﬂ = ')?E')‘(qt*’lB'k) -

For B- o, we have then



Section 21 -186~

i.e.
ET-IRN ¢ 3 Yo
(L7607 k) o5 (T ) = POk
The converse theorem is almost valid:

w

iemark: In case X 1is

esss

defectiveness is unnecessary

ot
l_l
o]
e
e}
]
0
o
=

fective conditional distribu
Proof: The theorem follows immediately from the relation

o

2 *a1 N
v( 15 L°(8) k) = nk

ee the proof of the previous theorem).

N
n

<

21.% Corollary: Let F be a probability measure on X

such that for all k e KX (X) we have
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2/ % _
(TP (7)) = pk .
Then, the conditional distribution of x e (X,y ), given

t(x) = To o is defined and eqgual to P“

Summarizing these results, we can say that except for the
possibility of defectivenes in theorem 21.2, existence of a
conditional distribution is equivalent to essential continuity

of the conditional expectations of K (X)-functions.

Theorem 21.1 can be strengthened considerably; it is wvalid for
fb(X)-functions, and even weaker continuity assumptions are

sufficient:

21.4 Theorem. Supvose that the conditional distribution

p7o is defined. Let f:X- R be a bounded, p-
integrable function, continuous at }Lyo-almost all points.,

Then, Lz(t)*f is essentially continuous at Yo with

(TP ) o (7)) = pTor .

Proof: For Fyo-almost all x we have (lemma 7.2, page 39)

fess(x) = f(x)
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and so (by theorem 20.2, page 178)
£(x) - f(x) = (x) .

. - v . -
The functions f and f are F"O—ln*Pgrabla since they

. . . . . Yo 4oy ;
bounded and semicontinuocus. Thus f 1is p“YO%-integrable
!
Jor - nJof = Yo
I f = TR = peot .
- 7

Now let € >0 be given. By theorem A 15 (page 345 ;

semicontinuity of the

anction p}-» pf when f is semi

continuous) we can choose a neighbourhood V of ¥y such

=) s
that

Lluf > . E

Nz

. B . <7
and F“f < JOf + €

for B <V ., Then
B. B= OF Yos Yae B
PE-e €T -e<pioT = pJor = plof<pit e
and so

”ﬁf - wios| < € .
This argument shows that fAJf converges t p}«f for

The theorem follows immediately from the identity

Ko
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pPr = v, 1%(e) 1)

proved as in the proof of theorem 21.1 (page 185; the bounded-

ness of f implies f e L2(}A) ).

The continuity assumptions about f may as well be replaced

by assumptions about essential continuity:

21.5 Corollary: Suppose that }Ayo is defined. Let

f @1 X5 1R be a }A-integrable, M -essentially bounded
function, }(—essentially continuous at }Lyo_ almost all
points. Then, the conditional expectation L2(t)*f of

f is y-essentially continuous at y, with

(=7, -

(TP D)oo (7) = pTo[f g,

Proof: Just apply theorem 21.4 to a representative fo s

satisfying the conditions of theorem 20.3 (page 182).

The'results of this section can be characterized as local

versions of the equation (Lz(t)*f)(y) = ,Ayf , based on the

idea that the left side should be interpreted as an essential
value. An immediate global interpretation of the equation
is this: In case )Ly is defined for almost all y , the
equatioﬁ is valid for almost all y , independently of the

choice of representative La(t)*f . This result is wvalid for
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arbitrary La(p)—functions f , and we shall prove it in section

i

24 (theorem 24.5, page 202 ). A special version of this

result follows immediately from the results of this section:

21.6  Theorem. Suppose that }AJ is defined for almost

all y . Then, for any bounded, continuous function £

the almost everywhere defined function

[p7e],

is a representative for the conditional expectation of f.

- . . . 2/ Vo
Proof: Let g denote an arbitrary representative of Le(t) f.
By theorem 20.3% (page 182) and theorem 21.4 above, we have

for v-almost all ¥y
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22. CONTIIUITY CF THE CONDITIORAL DISTRIBUTI]

ts of section 21, continuity properties of essential

values can be transferred into continuity properties of

22,7 "heorem, Let C be the set of points y such

that the conditional distribution }Ly is defined. Then

Q
¥
VB
~
P
o’

is continuous.

Proof: For k € K{(X) , the mapping

¥ _ 2 %
y = pk o= (T k) (T)
Co-é Ir
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is continuous (theorem 20.3, page 182).

22.2 Corollary: Suppose that p” is defined for all
i

oy

Y » @ (X)

is continuous.
030 B4 0 11 ~ 2 41 Y 3 Ao fs 3 FAr
22,5 Corollary: Suppose that }L is defined for

almost all y . Then the (almost everywhere defined)

o]

is measurable (see the appendix, page 347 ).
> $ & C -
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2%. EVERYWHEERE DEFINED CCNDITICHAL DISTRIBUTIONS.

As we shall see in section 24, locally defined conditional
distributions have all the global vroperties of classical
conditional distributions , 2s soon as they are almost

everywhere defined.

dowever, the global results and their proofs are considerably

simpler in case of everywhere defined conditionsl distributions.

As we have seen in section 17, the class of such cases is by
no means exclusive. It therefore seems reasonable to treat

" this simple case for itself,

We shall discuss the properties of thz family (}Ly|y e Y)
of conditional distributions, in particular those properties

characterizing the family. Throughout this section, let

vt Ep) > (X))
be given, and assume that supp v = Y .

The adjointness equatiocn.

2%.4 Theorem. For a continuous mapping

= Fy

Y- £ X)
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the following conditions are equivalent:

(1) The conditional distribution p.y is defined and
equal to F'y for all y .

(2) For all f e fb(X) and g e ﬁb(Y) we have

veMpfly, = pleGGtal, -

(3) TFor all f e {b(X) +the function [;uyf]y is a

representative of the conditional expectation of f.

Proof: (2) and (3) are obviously equivalent: Writing the

equation (2) by inner products we get
el fydy) = (L2(t)*g|f)/l = (eltf(w)'D), .

For fixed f , the validity of this equation for all g in
the dense subspace ‘Gb(Y) of L2(v) implies that

I2(s)* s (in T(y) ).

L}

Iy ly

Conversely, (2) is obviously valid when E/"‘yf]y is a re-

presentative of the conditional expectation.

(1) =>»(3) was proved in section 21 (theorem 21.6 , page 190).
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(3) =>»(1) follows from corollary 21.% (page 186): For
k € K(X) , the function [I,Ayk]y is continuous, and so
it admits its own value as essential value, i.e.

(L2(6)*k)

ess(y) = /“yk for all y .

B llary 21. have th J .

y corollary 21.5 we have en }4 },Iy

memark. The above theorem is valid (and the proof is unchanged)
when fb(}{) and ﬂb(Y) in (2) and (3) are replaced by

K (X) anda K(Y) .

The equation in (2) will be called the adjointness equation, for

obvious reasons (it states, when written on L2—fom, that

£ E}‘yf]y is the adjoint mapping to g-> got ).

Representation of /,L as the mixture with respect to v of the

conditional distributions Fy . It follows immediately from
theorem 23%.1 (inserting g := 1y and f := k e J(X) ) that

we have

23.2 Corollary: If Fy is defined for all y , then

}l is the mixture of the conditional distributions ).Ly

with respect to v :

K= y[);y]y (see the appendix, page 351 ).




The decomposition criterion.

very simple criterion exists:

-196-

In case t is continuous, a

23.%5 Theorem. Suppose that + is continuous (and
supp ¥ = Y ). For a continuous mapping
V- M
N fy
Y- P@
the following two conditions are equivalent:
1) The conditionsl distribution yy is defined and
equal to pu_ for all y .
i
(2) M 1is the mixture of the measures WJ_ with respect
to v, and for 211 y Y we have
+( ) = £
u\Fy, €y -
Notice that (2) is equivalent %o
(2): (v, ( Myt yeY)) is a decomposition of p with
[
respect to t , as defined in section 7 (page %6-37).
Proof: First suppose that }Ay is defined and equal to p
for all y . By the corollary above, M is then the mixture
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of the measures P“ , and the equation t(yyﬁ =

o

cdl2ll U4 Ol

from the definition of p’

t
h e K(Y) we have, by lemma 7.2 and corollary

B>y

The converse statement (2)==(1) follows imm

the theorem about conditioning on a decomposed me
,’\-:

. . ) }
heorem 7.1, page 38; put 2 := ®o A= v

and f =14 )

s(pon = t(Hn = p¥(net) = lim pi(no
Y

immediat

-

v

o/

+ .

i .
A A
A G0

sure

ct
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24, AIMOST EVERYWHERE DEFINED CONDITIONAL DISTRIBUTIONS.

In this and the following sections we shall frequently, without
explicit reference, apply the theorems A 20 and A 22 (see page
351-252 ) about preservation of integrability under trans-
formations and mixings. 7
Throughout this section, let

t (X,}L) - (Y¥,v)

be given.

The adjointness eguation. First notice that if the conditional

distribution lly is defined for almost all y , then the

adjointness equation
VES(y)}Ayf]y = }L[g(t(X))f(X)]X

is valid for fe € (X), g = € ,(¥) . This follows
immedistely from theorem 21.6 (page 190), as in case of every-
where defined conditional distributions. Also the representation
of M as a mixture of the conditional distributions is easily

generalized:

24,41 Theorem. If )uy is defined for almost all y ,
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cnen
A
po= vIply
Proof: The mapping y = F” is measurable (corollary 22.3,
page 192), and the identity

<
.
\: )
ol
'
]
=
"
H
O
H
=
m
x
C

follows immediately when g := /'Y and f := k are inserted
in the adjointness equation.

The adjointness eguation can also be applied as a criterion

the almost everywhere-case » :

24.2 Theorem. Let C c Y be a set with vC =1

, and

consider a continuous mapping

Y’*}‘y
Co P(X) .

Suppose that for all ke X(X), he X(Y), we have

v[h(y)}xyk]y = plaCe(x))r(x)], .

Then, the conditional distribution }Ay is defined for

all ye CnNsuppy by }*y= Py'

D
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Proof: Let y, & C N suppy be given. TFor ke (X)),
the function V[)Aykﬂy, (defined almost everywhere) 1is,
obviously;essentially continuous at Y, with the essential
value Fyok . Thus, by corollary 21.% (page 186) the con-
ditional distribution of x given t(x) =y, is defined and

equal to PY .
o

It follows from this theorem that the mapping y - py is

maximal, in the following sense:

24,2 Corollary: Let Co denote the zet cof points ¥y

such that Fy is defined, and suppose that vC, = 1.
Let € be a set such that

o—
and let
vy > My
C = PX
be a continuous mapping with the property that Fy = Py

for y e Co (i.e. ¥y - Hy is z continuous extension of

in the support). Then, C = C_ .

the conditional distributions to a bigger domain, contained
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Hence, the points of suppy where }.ly is undefined give
rise to proper singularities »®. TNotice, however, that this

result is only valid in case of almost everywhere defined

conditional distributions.

Hepresentation of the conditional expectation operator.

In order to prove the almost everywhere-version of the equation

(ua(t)"f)(y) = }Ayf , we shall need the following lemma:
2k.4 TLemma: Let p = V[f‘y]y be a mixture (as

defined in the appendix, page 351 ), where pw, v and Ky
are probability measures (v e P (¥) s /‘ly ,)L e P X)),
Then, for any f e L2(}1), the function [},Lyf]y (de~
fined almost everywhere according to theorem A 22) belongs

to L2(v) . The so defined mapping -

f > [}lyij

Lg(y) - L2(v)

is alinear operator with norm < 1 .

Proof: According to a wellknown convexity-inequality we have
2 2
f < f
Cpy) Py (E9

- (both sides are defined for almost all y). Hence, the function
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4

-~
2,

“(v) , its square being measurable and

-

- - o
L FyﬁJy belongs to

dominated by an integrable function. Further, we have

4)J
" RO
|

iy - o N
pNE - I _/fr_ \]
L — ~ v < N /
=3 ‘"P; y

v [Cpy

N o G2
= W(£7) = He s .
!

H

is a representative for the conditional expectation of

f: The bounded linear operators

3 ‘neide. s

(voth mapping (p) into coincide, since they

7Y ’

coincide on the dense subspace 7. (X) (corollary 21.6,
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24 .6 Corollary: The adjointness equation

viep'd, plee(xne(x)],

or (glgpyijjv (g.t|f)ﬂ

is valid for arbitrary L°- functions f e L2(u) and
g € L2(y) , when the conditional distributions are

defined almost everywhere.

The decomposition criterion. We have proved that the represen-

tation of M as the mixture with respect to v of the con-
-ditional distributions holds, as soon as the conditional
distributions are defined almost everywhere. The other half
part of the decomposition criterion is valid in the following

sense:

24.7 Theorem. Suppose that Py' is defined for almost

all y . Then, for almost all y, t is Py-measurable

and

t()ﬂ’) = £, .

Remark: Notice, that (v, ( Fyly € Y) ) need not be a

decomposition in the strict sense of section 7, even if t
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Yo { 1
(W08 &Y (x,p 80 = 3b = .

. N o~ A

Since we have y = y_ for (Fﬁ“i@ €_ —-almost all (x,y),
o Yo

we conclude that (still for v-almost all yo)

(p7oe & My dle) =y} = 1,

- . . 5 . v .
Hence, for almost all y_ , % is on—measuracle (namely,

ant mapping) with

This is the global version of the decomposition criterion.

The pointwise version (theorem 23.%, page 196) can be

n

m - . Y .
24.8 Theorem. For y_ e Y , suppose that pﬂa is de-

0 3

N . N v N
fined and that t is continuous at }Auo—almost all points.

Then, t is pyo—measurable with t(}LyO) = Ey .
o

Proof: Obviously, +t 1is }Lyo~measurable. For he K(Y),

the function het 1s continuous at yyo—almost all points,
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and therefore we have, by theorem 21.4 (page 187)

|
=
Q
~~
e
j»

[
ct
e’

|
~~
[a
N
~
ct
~’
*
N
=g

(]

ct
~r

4
4
—

Yoy, . ‘
t(}* °)h = i B s '‘egss Yo’

(20 ke

i
il
]
oy
‘\"
et
.

ILet C Dbe a subset of Y with vC =1

(1) For almost all y e C , t is p_-measurable with
£ oJ

N
n
N
-
i
<
-
~E
4
.
oy

v

distribution B is defined for

s

all y € C 0 suppV by ne o= Ry o -

I— - /
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or almost all y we have

[=5]

Proof:

ey
P -

and so, for ke X(X) and he K(Y),

Thus, the adjointness equation is satisfied, and the theorenm

follows immediately from
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25. STOCHASTIC INDEPENDENCE.

Let (X, pu ) Dbe a probability field and let

v v -+
T.: A~ 1. ’ iel
i
1 i

be a family of measurable transformations. Suppose that the
mapping

e 1) : X = TT Y.

or denumerable).

v. = t.(x) s xe (X,n)

are stochastically independent,

R R 35 edvnd Tyt Sa o - ~ T K r
if their jeint distribution is & measure, i.e, 1if
f+ 13 _I\, - Y, Y
(e = i o
! iel
{3 o v T 3 - 0o 3 e e 2 - 4V - 3-Yn P . 7
(in case I is infinite, it is assumed that the spaces Y

are compact; a product measure ® y. 1is then defined in

the obvious manner by its

1 formulate criterions for independence of two stochastic

variables in terms of conditional distributions and conditional
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expectations.

Definition: Two subspaces of a Hilbert space are said to

be geometrically orthogonal, if their orthogonal projections

commute,

Loosely speaking, geometric orthogonality of two subspaces
means that they are orthogonal, except that they may have a

nontrivial intersection.

Examples: Two planes in ]R3 are geometrically orthogonal,
if théy are orthogonal in the usual sense (that is why we use
‘the term geometrical . An alternative proposal is con-
ditional orthogonality ** , but that may be_confusing in this
particular connection). Statisticians will recognize the
concept of geometrical orthogonality from two Way variance
analysis, where the spaces corresponding to row- and column-

homogenity are geometrically orthogonal.
A purely geometrical description of the concept is this: Two

subspaces U and V are geometrically orthogonal if and only

if the two subspaces
uvn@wl  ana v ol

are orthogonal (in the usual sense). Thus, U and V should




be orthogonal
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relatively to the complement of their inter-

®

25.1

Theorem. For a diagram

]

~—rt

[
!\L,V}
, the
Y = 1
+ x e (X,
. f !
and z = J !
are ochastically independent.

N =
Yo
w70 of =z =

and equal to T .
The subspaces

T . ot R +

V. t= {got]l g & L
U

1 T

and V = he L
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(¢

are geometrically orthogonal with intersection

the line of constant functions).

Proof:

(

N . T
) = e

.Y

)= (

\

AN
ct
t=}

and E denote the orthogonal

projections onto Vt N VS and V , respectively. Thus, by
theorem 19.1 (1) (page 168)

t d 2, +*

e - 12(6)IP(%)

8% = I2(s)1(s)*
and Ef = pfeiy .

-

]
For two functions f, and f, from L“(p) it follows

immediately from the independence assumption (1) that
s to o T2k 20, V¥
(B%,|E°,), = p(((T7(8) E,)e8) - ((L5(£) £,)0))
= p(EEeEes) PPN £)et) = (BE, B, .

Thus, by the proverties of orthogonal projections we have
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We conclude that

e}
W 3
I

(e}

o

and (similarly, or by taking adjoints on both sides above)

2 -~ antsafasal Ry R ~ 7 3
.S satisfied., For B < Y and

= = e { ’}hatiﬁ“ 19 ,t,ae:;‘ "}
2 VB\ j & o\ })“
A ra L+ (heg)) _ 1 v Y- wlh) _ Th
= vE L B Tl ne a:s,//f = vE ;B) T\ n; = 17 .

(2)=»(1) : Assuming (2) , by theorem 5.2 (page 28) the

c
ditional distribution of (y,z) = (t(x),s(x)) , given %(x) = NN

)
e
vl
=
o}
[er}
Q
o))
o
fle]
o
<]
]
ot
(o]
m
®
=
Hy
(e}
H
-
m
[0}
o
T
L]
<
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The (unconditioned) distribution of (y,z) equals the mixture
v[£y®‘n’]y = ver.
Thus, y and 2z are independent,

Remark: Similar results for finitely or infinitely many

stochastic variables vy = ti(x) are easily deduced. Just

apply that the yi’s are independent if and only if for any

two disjoint subsets I1 and Ip of I the two variables

(y:1i e Iq) and (y.| i e IQ) are independent.

1
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26. BESULTS RELATED TO SUCCESIVE CONDITIONING.

Suppose we have a diagram

of finite probability fields and homomorphisms. Consider the

following conditional distributions:

. s s v N .
ﬂ’ H the conditional distribution of =x e (X, u) , given
]
{ \ >
tlx) = ¥y .
t 3 A At =3 A9 1 - ey - 4 - { TR Py ~
ﬁ : the conditional distribution of x g57f1ﬁ , given
e+ ) - >
[SAN A = Z .
Z . 32 . . o o :
v oo the conditional distribution of ye (Y,v ) , given
/o -
S\Y/ = Z .
(N . - A . s e
(7)) 3 the conditional distribution of the
H
o e VAN
variable® x e (L,fx ) , given s(x) = ¥ .

to each other in

= Y (the conditional distribution of
y , given z, equals the conditional

istribution of +t(x) , given 2z ).

jo7)
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(2) pz = vZLyy]y (the conditional distribution of x ,
given 2z , is the mixture of the con-
ditional distributions given y, with
respect to the conditional distribution

of y , giver z).

(3 (,Az)y = p7 for  z = s(y)
(the conditional distribution of x,
given z and then y , can be computed
immediately by conditioning on the

specification of y).

The formulae (1), (2) and (3) are valid in the sense that
the right side is defined if and only if the left side is
defined (the 1left side of (3) is undefined for =z % s(y) ).

We shall generalize these elementary results to the case of
arbitrary probability fields. Thus, throughout this section,
we study a diagram

<x,,‘>4——t———><Y, v) —S 5 (z,m)

of probability fields and homomorphisms.

We shall prove global as well as pointwise versions of the
formulae. Unfortunately, various degrees of regularity con-
ditions give rise to particular results; it is hard to decide,

at the present stage of the theory, which results to regard as
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interesting and which to throw

on the corollaries

the main results in

distributions.

-216-

out. Emphasis should be put
26.2, 26,7, 26.10 and 26.1% which give

the case of everywhere defined conditional

;7 Z
The formula t(p™) = v= .
i
%
26.1  Theorem, Suppose for z_ e« 2 that
(1) w#0 is defined
g i
/ : Z 4 L
(2) t is continuous at po ~almost all points.
Then, the conditional distribution y“0 is also defined
i and given by
y “0 = £( P oy

24,82 (page 205) as

:= ¥ and s := 1, (Y- Y ).
o) ~ P 7 Zo N . 9 a .
Proof: The transformed measure t( ) is obvicusly defined

According to

that for h in K (Y) we have
PR T . Z -
7T \ o N |
(L7(s) h) os(2,) = (t}A °)h .
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But from theorem 21.4 (page 187) it follows immediately, since

het 1is bounded and continuous at FZ0~almost 2ll points, that

(TP(se )" (me))  ((2,) = pPo(net) = (5)%°)n ,

and the left side of this equation equals (L2(s)*h)ess(zo),
since
I9(set) (hot) = L2(s)*T2(t) (hot)
= I2(s)Le(+Y1%(t)h = I1%(s)n .

26.2 Corollary. If }AZ is defined for all 2z and t

is-continuous, then v? is defined for all z and

%

v = t(p?) .

Remark: The corollary can also be regarded as a special case

of theorem 5.1 (page 27) .

Theorem 26.71 yields the following almost everywhere-result:

26.3 Corollary: Suppose that F?' is defined for almost

2ll z and that t is continuous at }A—almost all points.

Then, for aimost all 2z the conditional distribution vZ

is defined and equal to t(pz) .
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The proof is immediate.

This result is not valid without the continuity condition on
t (counterexample: Fut Z := X , s := 577 , where t 1is
injective and measurable but not having continuous restriction

1). But the result becomes valid again,

ition that v° is defined; this is the

are defined
, the trans-

2

to v© .

™ o] P ¥ 4= & nam 2 Ly SO 2 ) Wate: o ade g 3
Notice that theorem 24.7 20%) comes out as a special
case of this Tt
(K -) e an Tnereasinge o 1en £ mnact gsets
@SN, be an increasing segque nce ox CCA.A‘yd,\» C Sels
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P‘(UK ) = q for almost all =z .
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defined) mapping z —= t(p®) is measurable. In that case,

the theorem can be proved as follows:
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Now, put
and, similarly
D
i\
Let K= X

of

The restriction

is also measurable.

w s ik \
(nn with %(bKn,

X) = {de (D] A < 1}
b o @®
(K) := {3e M, (B)] g ll o € 7 b
ng. The conbtinuous mapping
> i(g)
5
@gfﬁ)ma po(X)
the is a
Hence, the mapping

when regarded asa mapping into @)C(K).
t to KX Thus, the mapping

Finally,

lemma
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is measurable. This completes the proof of theorem 26.4 .

(]

g

o Yl mh o = 7 +h o
26.6 Theoren. zo e 7Z that
. Z0 i Aafinad
1) ¥“C is defined
{
|
i i
‘- e pro a4 o D - )
(2) j is defined for v “O0~alme Y .
/
Then 1 © ia Aefined nd siven
lnen, W v 1 aellned andc iven O
|
|
! {
|
i
Z ZAT i
/IJ O - VvEOL . {
: il b !
Nj

o . . ‘ L 27 \¥
and corollary 21.5 (page 189), applied to the function I°(t) k,
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gives
v2 N ¥ \ N 2,/ * 2 * . -
(L=(set) k) __ (2 ) = (L))" (5t k) (2 )
ess (¢] SESES]
2 Y
= = v O[}A}{JY .
26,7 Corollary: Suvpvose that y“ is defined for all
z and w is defined for all ¥y . Then, n? is defined
all 2z and given by
z Zry ¥
/u - v L/u ]v ©
The almost everywhere-version looks like this:
o
26.8 Corollary. Suppose that v is defined for almost
all z and that uY is defined for almost all y . Then,
for almost all z , M is defined and
z Zr .,
u = VIpTlg

The proof is immediate.

N
I

o

otice that the results 26.

26.1, 26.2 and 26.% , respec

s 26.7 and 26.8 are analogous to

tively.

The deeper theorem 26.4

T
has no analogue, because the mapping y - P3 is continuous,
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support of y %o by

(on)y = }xy .

The almost everywhere-version reguires no continuity assumptions

about t :

26.411 Theorem. Suppose that the conditional distributions

v? and Fy are defined almost everywhere, Then, for

almost all 1z, ’J.Z is defined (corollary 26.8) and (by

theorem 26.4) t is a homomorphism
T (x,}xz) > (xv® .
Moreover, for almost all such z , the following statement

is true: For vZ-almost all y, the conditional

distribution (}LZ)y is defined and equal to Fy .

Proof: We apply the decomposition criterion. For almost all

z we have (corollary 26.8)
peo= vy

Moreover, by theorem 24.7 (page 203) we have



!
o
QJ
QN

!

&

we have

Fa

(]
4D

£

o}

e

on
enc

4
%

S

<i

£

osit
e

9]

'bo]
ut

o
oo

decon
a

rywhere

+
1t

-
o

the

of
resu

y = M

neorem.

¥

LI

st}

he

4
)
nam

> DL Tl .

proves
Mh
itheo

o
LIS

-

26.12

neorenm

(0]
£
2

~s

.

ost all y

i

yC = 1 such that ( p%)Y

4

"
o

be a set with

ned fo

L

defi

that

such



=250=

o
=Y

C

e

1

1

USe.

O

continu




Section 26

-23] =

3 z s(y)\y . z
and so ( P W = ( P“k”>)° for y“-almost all y
. 7 , .
Thus, for v “-almost all y we have
s(IINTY = w0( 2T
t((u Yy o= (D) = gy
A zZre :(L>\Y1 _ VZr/ , Z\L‘I _ A
ana y L }J. J v = 3 L\ /IJ / iy ;} ®
This being true for almost all z, we conclude that the mapping
s(¥y)yy
vy > (p )
c - P @
satisfies the conditions of theorem 24.9:
s(y)
£(( i TNy Ey for y-almost all y
(=
- 16 z s(y)\7
and yE( }L \7/)3:‘{ = ‘”’E y E( P ) -E*JIZ
| ol H
= i i = .
TTL,;“ - fi
26.1% Corollary: Suppose that the conditional
z zZ . .
distributions F and y° are everywhere defined.
™ 1 A4 $ 1 A 3 h 3 { ny
Further, suppose that the conditional distribution \F )
is defined for al z and v with 2z = s(y), and that the
mapping
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y - (p3INY

Y - P (X)

(¢}

onditional distribution }AY is
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27. INTERCHANGING TWO CONDITIONING OPERATIONS.

(X, p) ——— (¥, v)

n

We shall apply the results of the previous section to the
diagram

- (t,s - D [ 3

(%, —_— (¥Yx 2 , X? 3 sV )
studied in section 5 (see page 28), where y:= (t,s)p
and p denotes the projection.

The following table »+translates *® the conditional distributions

and the formulae studied in section 26 (see page 214-215) into

the terminology of this particular case:

section 26 section 27
y w(y,2)
2

xy: fy® fy (cfr. theorem 5.2, page 28)

. 7

N\
(FZ>Y <FY}(y’ZJ ? )

¥
~~
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(section 26) (section 27)
(1 s(pH = vE (t,8) p7 = e 087 (or s() =57)
(2) Hz = Vz[}ly]y ' }&y - EYE P(y’Z)]Z
(%) (}Lz)y = ’J.y (P_y)z - “<Y,Z)

The formula corresponding to (1) , written on the form
s(Fy) = gy , is known from section 5, and the results
26.1, 26.2, 26.% and 26.4 are simply transferred into strbnger

versions of theorem 5.1 (page 27). Tor example,

theorem 26.1 gives

Suppose for T € Y +that
(1) p’°  is defined

(2) s and t are continuous at Fyo—almost all

points.,

Then, the (derived) conditional distribution §:Y° is

defined, and

t,8) Wo = eyoe»gyo

(and so s( pu79) = gJo ).
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Thus, in order to cancel the conditioning upon 2z (changing
F(yo,z) to Myo ) we must mix according to the distribution

of 2z under the remaining condition To *

The formula {(3) yields a formula for succesive conditioning.

For example,

theorem 26.11 gives

Suppose that gy and Fﬂy’z) are defined almost every-
where. Then, for almost all y the conditional

distribution Py is defined, and s 1s a homomorphism
s: (X, 07y > (z,87)
with almost everywhere defined conditional distributions

(}‘Y)Z' - F(y,Z)

Thus, in order to condition uvon (y,z), we may condition

first on y and then on 2z .

In particular, we conclude that the corder of the two conditioning
operations is irrelevant. This brings us to the point of this

section:
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27.1  Theorem. Suppose that the conditional distributions

F(y,Z)

and the derived conditional distributions gy
and y? are defined almost everywhere, TFor almost all

(y,2) = (t(x),s(x)) , xe (X,}L) , we have then

(FY)Z - ’l(y,Z) - (}AZ)}' .

Proof: Just apply the above result (derived from theorem

26.11) twice, interchanging Y and Z in the second appli-

cation,

Applying corollary 26.10 in stead of theorem 26.11, we get

27.2 Theorem. Suppose that s and t are continuous

and that the conditional distributions

F(Y’Z)

W

and }LZ

(or, alternatively gy)

(or, alternatively v?%)

are everywhere defined. Then, for all (y,z) such that
Yy Dbelongs to the support of v and z belongs to the

support of Ey , Wwe have

(pD2 = a2 (Y,
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28, DECOMPOSITION OF A CONDITIONING PROBLEM.

In section 8 (page 49) and section 17 (page 145) we saw that
particularly tedious conditioning problems may offer piece-
wise solutions only. For exémple, if we want to apply the
classical methods outlined in section 8, it may be necessary
to divide the domain X into smaller sets Xi for which
”supplementary transformations » exist. This problem does
not arise when the methods of chapter IV are applied, but still,

problems of mixed dimension may force upon us a partitioning

of ¥ or Y .

It is a trivial matter to piece the solutions together, when
a partitioning of Y 1is given., The more interesting problem
of handling a partitioning of X can be solved by the methods

indicated in section 27.

Partitionings of the codomain Y.

28,1 Theorem. Let t: (X,’L)-+ (¥, v) Dbe given. Let

(Yil ieI) be a family of pairwise disjoint, open sets,
such that

in> 6] for all 1

and v, = 4

(then I is at most denumerable, znd Y\(UYi) is a closed
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are defined at the same time and equal to each other when de-

fined.
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[0]

Pl

h'd

Partitionings of the domain X .

28.2 Theorem. Let y‘ - (Y,¥) be given and

let (X.,|i & I) be a family of pairwise disjoint open

1

sets in X
i uX. > 0 for all i
i ] i
nd ¥ = 1 .
a L. pE ]
For a point y_<= Y , suppose
(&P g (y,) := lim exists for all i .
i 3y
>Y
(2) = 1.

(3) For all 1 with 0 +the conditional
r A= \YT i1 Y £ :
(u"1)/9% for the homomorphism

Then, the conditional distribution uJ“ is defined and

}; \ ‘vl Y,
|9 © = Z Jl\urofl\i}'( }“) .
! iel

g8i(yo,) >0
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Proof: We regard I as a locally compact and o-compact

(namely, denumerable) space (in its discrete topology). Let
s: (X,p) =» (I,g)

be the almost everywhere defined transformation

i for x e X,
s(x) 1= 1
undefined for x e X\( UXi).

The conditions (1) and (2) state, exactly, that the (derived)
conditional distribution §y° is defined and has the density
[gi(yd)]i with respect to counting measure: (1) states
that the limit '§y° = B1-.:’;m ‘§B exists, since the density
converges pointwise, and (%‘3 states that this limit is not

defective,

Consider the diagram

(X, p) —828)  (vx1, ) —B 5 (¥, v)

Cy:= (t,s)(’A) , and p. denotesthe projection). By theorem
5.2 (page 28) the conditional distribution y70 is defined
and equal to €_ @ §7° . Moreover, for all i with g.(y.)>0
Yo i*Yo
(i.e. for g -almost all i) the conditional distribution
'1(70’1) of xe (X,pn) , given (t(x),s(x)) = (y,,1) , is
defined and equal %to (’Axi)YO : For D= (yo,i) , yD>0,
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we have from a certain ' stage

(o]

< Y x {i}

(the fibre Y x {i} 4is open since I is discrete) and thus
D = Bx{i} , BcY;

by the condition

. . -}
™ R 0N
- L . B¥{1 . Xsnt B
lim I = lim n {1} = lim p1"
i / I

By,

<pxi)y°.

We have now proved, that the diagram satisfies the conditions
of theorem 26.6 (page 224). Hence, we conclude that the con-

N

ditional distribution p’C is defined and equal to
/

3 (7,10 - ( Yoyr 4(¥.1)

§ O[}L iz, 1) = <Eyo® POl ],
Tor 1 (Fnsilq Yars 1 Lan
quE}L\J 7L/-§i = 3 c[()k 1)«?’0]1

T g3 (3 ) pri)To
:
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-
4 5 — e 2 - .
For 211 k e X (X) , the L“(v_ )-function
- Do (7)) - N2
[pPmThg = @y Kooy
=/ V1
converges to the -~) —function
in i.e.
T wPTudT Vi1 s O far
| L\ /U =t / yr/r‘.}ylgig -7 ~ it *
e + v e (X u\‘ civen
"hen, © x e (X, }) , given
t(x = e C by
P’I = U .
"y
Remarks: Motice that the condition (4) follows from (2)
by the dominated convergence principle in case I (and thereby
?z ) is denumerable., The condition (4) is just a regularity
condition imposed on the convergence in (2). It is difficult

to invent
satisfied

a net of

examples where (1),(2) and (3

. The necessity of

L2—¢unctions may converge poil

(4) arises from

), but not (4), are

the fact that

ntwise towards one
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function and in Lz-norm towards another., It is not hard to
prove that (Lz(tM)*k)opIM does converge in quadratic mean,
namely towards L2(t)*k , S0 what (4) essentially says is that
the net considered is not of this particular (pathological)

type.

In view of these remarks, the consequences of the theorem

boil down to this: If the limit distributions

)‘yl
lim }LPIM(yI) are defined for almost all Y1 and depend con-
MTI

tinuously upon yg , then they constitute the conditional

distributions for the transformation t .

In case I = I , the convergence ”M?I * can be replaced
by "n- ® , M= {1, ... , n} ™ ; +this will be obvious

from the proof.

Hotice that the L2—convergence in (4) is equivalent %o Lq—
convergence oOr convergence in probability, since the functions

under consideration are uniformely bounded.

The continuity condition (%) is the really restrictive condition
among the four. If only (1), (2) and (4) are satisfied and

the mapping yr = FYI is measurable, then the distributions
PyI can be regarded as classical conditional distributions »
in the sense that they give rise to a pointwise representation
of the conditional expectation operator Lz(t)* . In order to

make »proper  conditional distributions out of the so defined

distributions, the topology on YI can be changed, such that
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19 becomes continuous as a function of y,. . In general,
I

Froof of the theorem: We apply theorem 24.2 (page 199).

dense subspace of continuous function depending on a finite
number of coordinates only (see page 354 ):
Let h Dbe s ~function of the form
h = hye Dy M e 9
"o L2 o (o] o}
where h &= K("‘f Y
e Y = . Iy /e
o o}
For M2 M (i.e. from a certain step in the limit pro-

0
cedure MAI ) we have then

N N o 7/
where hy = byepy e }((YM) , and for ke K(X)
o o

we get
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CHAPTER VII : EXAMPLES AND APPLICATIONS

20, CONDITIONING ON THE FIRST COORDINATE IN A TWODIMENSICNAL

DISTRIBUTION.

To illustrate the kind of regularity conditions necessary for
existence of conditional distributions, vointwise or almost
everywhere, we shall study some examples of distributions in
the plane and their conditional distributions given the pro-

jection onto a line.

In most of the examples below, the distribution M is defined
in geometric terms, and the statements about existence or
nonexistence of conditional distributions are correspondingly
unprecise. The transformation t under consideration is the
orthogonal projection onto a horizontally drawn line. Points
of this line (the x-axis) are denoted x, xo etc. , not

Yy T, etc. as we are used to for points of the codomain Y .

First consider some examples where 3 is given by a density

of the form

with respect to Lebesgue measure 'ﬁ2 . Thus, 1 is the

uniform distribution on the domain A .
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Example 1: For a plain area like
this, the conditional distribution

}1

the support of v . The conditional

* is defined for all x in

‘distributions are simply uniform

distributions on segments of
supp Vv
vertical lines, except at the
endpoints of the support interval, where the conditional

distributions degenerate to one point measures.

Example 2: Also in this case
the conditional distribution
is defined everywhere on the

support. At the left endpoint

we get a uniform distribution

on a line segment.

Zxample 3: This area yields a
singularity point at X, » where
the »left conditional
distribution *» is different

from the »right conditional

distribution . Notice, how-

ever, that the conditional

o distribution is almost evegz—
where defined. The singularity point X, is a discontinuity

point for the density g of V.
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Example 4: This example shows
that a singularity may occur
even if the boundary of A
does not contain a segment of
a vertical line. Here,

glx,) = 0.

Exemplé 5: An unbounded domain
of the shape indicated here
gives rise to a defective con-
ditional distribution at Xy -
The density g admits the

value +® at Xo o when properly

defined.

Example 6: We can construct A
such that the conditional
distribution is nowhere defined

in the following manner:

Let ho: IR-> IR be an integrable
function of the shape indicated
by the figure (we can take the

density g from the previous

example, or we can define hb explicitely by, say,
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ho(x) := (=log|x{)v0 . )
Next, define h:IR-> IR by

@ 1
h(x) := L :;T ho(x-qg)

where (qn) is a dense sequence of numbers (for example,
the rational numbers, enumerated in some manner). Then h
is integrable. For A we take the subgraph of h y 1., we

define
A= {(x,7)]0¢ygh(x) } .
The scrawl to the left of the

text is the closest we can come

to a picture of this set A.

The artist has been somewhat

restrained by the fact that

/
i
I
YA
7
1%
?
7
?
V;
2
7
7
¥
2
A
4
7
7
%
%
7
7
7
/
v
7

the set 1s dense in a half plane.
The conditional distribution
is nowhere defined (defective at the points 9y, and completely

undefined at all other points).

Example 7: WNow, let us turn to the case where P is giveﬁ

by some continuocus density f with respect to Lebesgue measure
in the plane. We saw in section 8, that the conditional
distributions are then, in most cases, defined; but counter-

examples do, of course, exist:
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Let f:]R2—) IR be a positive,
continuous probability density
which is constant on the y-axis
and decrasing away from the
y-axis, faster the larger is
> the distance to the x-axis.
The level curves may look as
indicated by the figure. As
a concrete example, take
' %e_lx.elﬂ‘ )

f(xsy) =

Obviously, the conditional distribution of (x,y), gmiven

x = 0, is defective.

Example 8: Copying the construction of example 6, we can
construct a continuous probability density f in the plane
such that the conditional distribution of (x,y), given x,

is nowhere defined: Put

[eo]
f1(x’7) = E

fx-q_, ¥)
n="1 n’

A
on
where f denotes the density from example 7 above. Then,

f,I is a continuous probability demsity, and it is not hard
to show that the conditional distributions are.defective for
X = q and undefined at all other points. The drawing of the

curves of constance for i‘,I is left to the reader as an

exercise.
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Exanple 9: To illustrate some
of the ideas in section 16 and
17, consider the case where

P is the uniform distribution
" (arc-length) on a smooth curve

of length 1. TFor the curve

lx ’ drawn here the conditional
distribution is defined at
all points of the support,
except at the point Xy The
conditional distributions to
the right of x  are one point
- measures, while the conditional
distributions to the left of
X, (except at the left endpoint)

are concentrated at two points.

At the point x, (see the second

 e—1 i figure) the conditional distri-

1 bution is concentrated at the
two points =2 and b . The length of an infinitesimal piece
of the curve at a , corresponding to an interval [xq,xq+dxj
on the x-axis is (by Pythagoras® theorem) [/1 + %2 .ax y
where « denobtes the slope of the tangent at a. Similarly
we get the arc-length /1 + ﬁ 2 .dx at b , and so the

conditional distribution of (x,y), given x & [xq,x1+dxﬂ,

equals
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const.-( 1+«2 «dx. ea + |/1+p2 A eb )

1 ‘/'2 2
V1w o 12 NAGCENE IR A

This is the conditional distribution of (x,y), given x = X
These considerations cen easily be made precise : If the curve

is given by an infinitesimally isomebtric parametrization
(x(s),y(s)) , se [0,1]

then the geometric measure on the curve is simply the trans-
formed Lebesgue measure from [0,1] , and the formula for the
conditional density £ (section 16, page 141) is immediately

applicable,

Example 10: This curve con-
tains a segméntvof a vertical
line; thus the transformed

distribution v has an atom
at Xo and the conditional

distribution at X0 is not

defined. Thus the conditional

distribution is not defined

x s 3
4‘ o almost everywhere., This is a
typical *"mixed dimension

irregularity , where a seemingly



unimportant singularity in a
certain dimension gives rise

to -a more serious singularity

in a lower dimension. The

0]

solution of the problem i

immediate, from the remarks

-

in section 17 (page 14%5):
We change the topology of the

domain (and, possibly, on

the

(&3

O
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ohe oCHE ATITICATICONS OF THE METHODS IN CHAPTER IV.

2 .
Let /1 be a2 probability measure in the plane 1™, given by

2 density [ with respect to Lebesgue measure, and let

be a2 surjectively regular transformaticn.
Surcose we have parametrizations

. 2
sy. Zy-e R

of thé level curves Xy = t—q(y) , where ZV is IR or some

aisjoint union of open intervals on IR,

‘nder these assumptions, we can derive formulae for the density

p-l

g of y = t(x) , the conditional density 7 of x with

respect to the geometric measure on Xv and the density of

o

the derived conditional distribution of, say, =x miven

1 k]
t(xﬂ,xz) = 7 . Throughout the section, the formulae of

section 16 (vaze 139-141) are in constant use.

We shall not be very careful about variable specifications etc.,
since it will always be clear from the context which variables
are to be integrated out, and partial derivatives etc. should

always be evaluated at the varying point under consideration.
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of v 1is given by

;"("\ = %X \E 'f» =
v
(| 0% o, 0%
\ (77" &) :
. f(s_(z)) dz .
- - . y
), (32 )2 ()2
v R 2

- N4 3
The ™»conditional density »* fY of ;iy with respect to

A+ is given by

~ . 1 . .
7 (x) = =57 F(x)f{x) .
Hence,
A 7.4, = 7.5 ({Ds_| .- A, )
e Xg N y'o ay
1 F.f.s_(|Ds_| -4, )
g(y) y y'o Zy :

This formula tells us that the conditional distribution of

the parameter

given t(x) = y , has the density
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2 2
_1?_I_£:%l_ -f(z,y-2) dz
7 + )

/l

The conditional distribution of X, (or z), given X +X, =Y,

Yo 7l 1 7 1 w
:'?<Z/ = :"r’y‘ : V.,_ f‘z,y-z)-l, 2 = gZV'T ‘i(Z,y'-’Z
B S / > B\ S
Example 2: y = t(xq,xg) = XXy
Dt = X x, | .
[ 2 14
The level curves Xv are hyperbolas, parametrizable by
(x,,X,) = s (z) = (z,9) z € R\{0}
A ’!’ 2—’ *y\ 72, ) { ) .

Then { q

Thus, the distribution of t(xq,xg) = x,'-x2 has the density

)
/
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g(y)

by
S
-

SN as]
D
fof
8]

=)

and the distribution of x, , given X 0 Xo= T, has the density

Y, 1 1 - N
A . e s . )]
hv(z) ET§T - iz, z /-
AR | 2|

As a special case, suppose that X, and x, are independent,

uniformely distributed on [C,1]. Then the product x, -X,
- ] o~

("
s(y) = 3 tiT dz = -logy  (ye [0,1])
| o
- 1€l

1

while the distribution of x, , given % *%X5 = Y , Hhas the

NI 1 1 r
h'(z) = — = 7 ) (z & {y,1
L2, {-loz v \ W
|2 . g(y) z-(=log y)
-X‘\
Example 3: N = t(xq,xg) = —Ek ;

ol
VI TN
S

@)
-

Dt = L -

ed
s
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The level curves are lines, parametrizable by

(x1,%5) = s (2) = (z,y2),

~
<

1

~nu

w
~——
AN
(8]
A

S
+
<4
.
H
-~
N
°d
8]
s
(e N
]

oz D L 1.2
(_ 1ZNe Y, a\ﬁ:
= ¥==x) (G

2 z

Z

and the conditional distribution of X, is given by

— 1 R
Y (z) = —Ef§7-lzkx(z,yz) .

As a special

0
s
Lo

ase, suppose that x, and X, are independent,

i

normally distributed (0,1) , i.e.

2 2N/~
e"(xﬂ +X, )/2

3

f{xq,xg) =

The distribution of y = x2/11 is then given by the density

- 2 22 /
S I (MR e pTCe
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@© 20,2
1 -z°(1+y%)/2
= . . dz
2 2 é_]‘? e
0
@©
2 2 72
-z=(1+ 2 .. 2
= 1 e A+375)/2 (1+3%) dx
R
w(1+y°) 0
{‘O:)
= L = e aw
T(1+y°) Jg
= 1
——— .
~ N
T(1+3y%)
Thus, the distribution of xp/xq is a normalized Cauchy
distribution. The conditional distribution of x, , given
x,w,/x_,i = ¥ , has the density
2 2y,
nY(z) = ] | 2 |ae @=2 (1#¥7)/2
N gly) " 2r
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52, TEE NORVMALIZED NORMAL DISTRIBUTION.

YMany classical distributions, considered in the statistical
applications of the normal distribution, are easily deduced

by the methods of chapter IV. This approach becomes geometric,
as opposed to the more analytic, classical approach. TFor
example, normalizing factors involve areas of spheres rather
than values of the r‘-function, and the formulation is purely
coordinate-free (except, of course, for the solutions to

classical problems, posing themselves in coordinate terms).

liotation:

En * denotes an n-dimensional Euclidean space.

An denotes the meometric measure on En .

S,4(a) = {xeE | |lx|| = a } is the sphere of

radius a in E_ . Sn-'l(a) is (for 2a>0 ) an
(n-1)-dimensional submanifold of En (namely, a level
surface for the surjectively regular mapping x -> B ||2,

E \{o} » Jo,+o[ ). We put
Bpq = Sn—1(1) .

For the open ball of radius a we write -

B (a) := {xeE | {lx|] < a } , and the open unit ball
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Se

o

is denoted by

The manifold S (a) 1is compact, and so its geometric
- ’ =

measure must be bounded. We write

L(a) 1= HAc Pt for its total mass, the
n--1 O _qla) ! ®©
1=
“area ” of an (n-1)-dimensional sphere of radius a.
In particular, we put
A 1= A 1) .
r"/l Ii="y :
The »volume ” of the ball B _(a) is denoted by
YF(a) 1= ﬁw(Er(a% ) , in particular
4 il
Y .o v (1)
vn t= \/n(‘}, .
The normalized normal distribution on Er is defined
as
2,
. \ - = ll=/2
t= A wher x) = c_-e ! '
Yn ﬁon n °* e C?n< ’ n
and c is a normalizing factor, for the present
n b
only known as
T 2 4
- ilx i /2
- 4/ I 'l. '
n . ' ﬁr}[e 4x -
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We start by proving a wellknown theorem of fundamental im-

portance in multivariate statistical analysis:

formation

22.1  Theoren. Let
D,
be linear mappings
conds +35 ana
conditions
PPN #*
L y, L:D- =
~ *
=/ P3Py =
k
7 N r‘\ *
(3) - Py Py
i
. P
Then, for xe (E,,V

E, > E R i=1,2, oo, 4 k
following three

a) £ o » i

0 for i % J

15 (i.e. p, 1is coisometric)

J s

are independent and normally distributed, i.e.

the trans-
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have proved that

O
1]
Q

.
.
.
[¢]
.

n
1 k

e: Let e,, ... ,© be an orthonormal base in E_ ,

and consider the coordinate variables

\ /7
~r . —_ < ) - { ~r

1= p:(x) = (e.lx) .
m o~ ~F oSy . TS ~ ] Pl ~
"he so defined mappings D Eﬁ-» I are easily seen to

5 .

4+ 3 far + PP £+ + Ty
satisf he conditions of the theorem. Thus Tqs eve a¥y
2 -] . malla A4 ot - A A 5 - - sy (0 A0

are independent, normally distributed with parameters (C,1).

The xa—distributigg. Consider the transformation

t: En-6:10,+<D[

S
W
Ry

(the transformation is not defined at x = O , since we exclude
O from the codomain. Thus En ought to be replaced by
En\{C}. Such minor changes (removal of a closed null set)

are ignored here and in the following).

The distribution of the stochastic variable
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Identifying E_ with D(E_ , XO> and TR with D( ]O,+<D[,y0)
il ii
in the usual manner, we get
. 4
(De(x ))x = im = (t(x_+h.x) - t(x))
o} +n h o o]
o =y
= lim = (2h(x_|x) + hzl‘xl! )
h =0 - e
= E\XG;X, , i1.e.
-~/ \ v ! N1 b ™
N+ ) - f ~ ~ ) . n T
Do(x,) iz 1x)ly E, > R.
- - . T+ * N
The adjoint mapping ,,LA)): R-= 3 1s determined by
¢ n
(v Yol _ <17 Yo ) oSf .
(Dt(x,) ,{A)Fh = (J;LV(XO)A/JR 3’5‘Xo‘x>E
= (2y-x tx>~r1 ’
Y 7o B
n
«Ce
SRR
J_)’ X A2 = \T' .
tk.&o) y 2(, XO

-270-

2 -
t(x) = ||x|| , x e (B ,v)

called the Xc—distribution with n degrees of freedom.

order to compute its density, we must know the differential

3
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A P A -
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grand is constant on the level surface).
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following (intuitively obvious)
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A
T = é Aq ~ 3.1416
we get
c., = L ~  0.3%989 .

distribution on

The uniform

on the sphere - q\a, , we
1 A

3 ya o~

A ‘E—" ol

5_ ,(a), By the uniform distribution
Ii="1
mean the probability measure
AY .
noa(2)

of

This distribution appears as the
. . . N U 112 2 L
xe (E_, v ), given t(x) = ||x]| = a“ , since the
id il
conditional density
= T(x)f(x)
is constant on the
Projection of the uniform distribution. TFor k<n , let

) = B (= the closure of 3 ).
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Di Onq™>

'e denote the (almost everywhere defined) restriction of o, -
we skall compute the density of the transformed measure
- \
(= %y
“r-1 “n-1
with respect To the geometric measure on ﬁk .
we think of =, as a subspace of Er’ imbedded

0
and the level surfaces for op

that subspace, are
N -1, \ ¢ ‘ 1
S = (z = ixe 8 pPX = Z
( n /]/z 1Y N &/ { el 1S ;
'd ~ F —
= {x e bn—1! -z € B

1|2

0
-

l|x-2 ||2 =

h)
o

= {X

M

n'

12 = 1 -z

= {z+y | |lv|

~ 0 2
= z + Dn—k—1( /1-liz || ) ,

1—{]21‘2 and

the orthogonal projection onvo

and x-z € EFL }

X-2 & Ekii

i
and y = E -+ }

>
where 5 _, ,(}/1-]|z || ) denotes the sphere of radius
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“hus the determinant in question is
F N1 O 1
DX )1 = = i
2
ow. the of the distribution of 2z = p(x)
computed {(by the formula g(y) = Ay (Fef) D)

O \ /. | o A .
n-1‘z L i-ilz |l n-1- 3
/ 5
_ A (V= 1lz 1
1 n-k-1' ¥ "~ Il
_ .

1/’1—«2 P e A
12 1] e

t
»
B
o]
el
O
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o
H
jos
u
Y
0
3
{
[e]
o]
e
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9
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)
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p:E - R (=~ E)

e]

where X is 2 unit vector. Thus, the inner product of a

o)

fixed unit vector with a uniformely distributed unit vector

has the density
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In particular, for n = 3 we get a constant density, i.e.

T

z is uniformely distributed on ]-1,1[ . Hence

Ly
=V, =
31
or
A, = ALV, = 4w,

A more general version of this argument gives a recursive

formula for A_ :
Li=={
Computation of A . . According to theorem 15.1 (the de-

composition of the geometric measure) ILebesgue measure on E

of the measures

]
i

?\—.r = — ”\ 3 arE>
25 FnalV )

with respect to Lebesgue measure on 10.+®| . From this
I 2 JY, L
follows immediately that
®

v 4 (R ! (B Y g

V = An (B ) = e ’An 1=\ B_ ) dy

n 19 n - b} B’ n

“n 0 2y n—ﬂib ¥/
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be stochastically

parameters

-281-

independent, normally distributed with

tx
e
e
|
=

51

= = (x. + .
n "o

3 - - (v + .
5 = (¥,

In order %o compute the distribution of r , first notice
that this ditribution does not depend upon the four parameters
2 2 he
TN, O and w™ : Defining
X, -%
U. L= 1 5
1 —
o
v, 1= Ii= 1M
i N
w
we may as well write the correlation coefficient as
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Z: (ui—ﬁ)(vi~5)

?
=2 =\2
/(T -0?(T (v-92)
and here, Wos Vgs  eee 5 Uy V) are normalized normally
distributed.
The vectors
u 1= (u,-a , ... , un—u)
i id
and v? = QV1—§ s eee s vn~§)
are the orthogonal projections of u = (11, see yu ) and
il
v =(v,, ... ,v,) onto the m-1)-dimensional subspace
3 .z {4 1 i BT - -
“n-v = ; h{x’ 0 ,hn,\ | L g = U } .
By theorem 32.1,
on E_, . Thus,
Ai==
59 3
3 v .
T = ( ==— | - ,
1 " 1 ! 1 xr9 |
Hut ] vl
wher w/ v il and v/ {|v? | are independent and
uniformely distributed on the unit sphere in E .  Then,

equals a fixed unitvector e_ , is the distribution of an

ctor with a uniformely distributed

¢

inner product of a fixed unit v
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n

it must also be the unconditioned distri

log

ution of r . Hence,

the distribution of the empirical correlation coefficient has

A n-4
“n-3% 2\ 2
=2 (1-r7) , re ]-1,1[
A
=<

»

ment above showed that r 1

)

s stochastical-

¢

(and, similarly, of v, but certainly
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3%, CONDITIONING ON A LINEAR FUNCTION IN A NORMAL PROCESS.

By a normal process (or a Gaussian process) we mean a process

given by a consistent family of multidimensional normal
distributions (i.e. affine transformations of normalized normal

distributions).

In order to apply Kolmogorovs consistency theorem, we must
compactify the state space. Thus, the processes considered

are of the form
(x) = (Emﬁ@ﬂ,r),

and the normality simoply means that for any finite subset
{tq, - ,tk} of T , the distribution of (xtﬁ, ey xtk)
is a usual normal distribution on " (possibly concentrated

on an affine subspace), imbedded in [-®,+o]" .

In a finite dimensional normal distribution, conditiocnal
distributions given a linear function of the observations,
are always defined on the support. In order to prove this
statement, just reduce to the problem of conditioning on a
coisometry in a normalized normal distribution, and apply

theorem 3%2.1 (page 267).

It follows immediately from theorem 9.1 (page 52) that con-

ditioning upon a linear function
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y = t(xtq, cee xtk) , t: R > R"

of finitely many coordinates is possible.

We can extend this result a little; essentially, conditioning

upon any finite dimensional linear function in a normal process

is possible:

Let L2(xt)betheclosedsubspace of L2(P) , spanned by the
variables Xy (regarded as L2-functions). It can be proved

(not-surprisingly) that for any finite number f , T

PR
of functions from Le(xt), the n-dimensional stochastic variable

n

J = (y/lv vee s yn) = (fq((xt))a ces g fn((xt>) )

is normally distributed. By means of this result, it follows

immediately from theorem 9.1, that conditioning on any such

variable y 1is possible (the joint distribution of Tqs oo

Tno Fp 9 eee s X is normal for any finite subset {tq, ses
1

t of T).

k
)

Example: For the Wiener process
(x) e (Foewl®r el pu)

given by

Ext = 0, Extx = tas ,

s
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it can be proved that the sample function is continuous

almost surely, Thus, a variable like

1
C
is welldefined. From
.1 <
y = limg 2;% X3/

it follows easily that y TDbelongs to L2(xt) {or, more
precise: y as a function of (xt) belongs to Lz(xt) s
and so the conditional distribution of a Wiener process,

1
given g xtdt = y_ , is welldefined for all y_ e R .
0 o o

It should be emphasized, that the result is only valid for

finite dimensional linear functions of a process. Conditioning

upon an infinite number of linear variables is in general not
possible, unless the topology of the codomain is chosen finer
than the product topology (cfr. the remarks in section 29,

page 246).

Example: Let (xtlt & Z) be a stationary normal process
(i.e., its distribution is invariant under translations of the

tihescale) and consider the autoregression, or the predictor

Vo i Blxpa Dxg s Xpq0 Fpos eee )
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the conditional expectation of the next observation Xpoq o
given Xy Xp_q 5 ves (the observed part of the process).
It can be proved that g (as a function of (xt) ) belongs

to the space L2(xt).

Now, one would expect the conditional distribution of Xpeq o
given x_,X,_,, ... , to be the normal distribution with
mean y. and variance

2

o = E(x

2
4177

= the variance of the prediction error,

This is true, if the conditional distribubtion is defined;

but it is not always defined: Let (xg, xg_1 s e.. ) De

*»an observed past * for which the gonditional distribution

of the next observation is defined. Then, by our definition

of a conditional distribution, there exists a neighbourhood

Ve [~o,+x] {5, &1, un ) of the observed past such that
conditioning on different subsets of that neighbourhood give
approximately the same conditional distribution. Now, the
neighbourhood V (in the product topology) confains a neighbour-

hood which is a cylinder with finite dimensional base, i.e. a

set determined by conditions on finitely many coordinates
only. In view of the linearity of the autoregression, we
conclude that it must be independent of all coordinates but

these. This means, that the process is autoregressive of

finite order: the autoregression depends on a finite
number of past observations only. It is not extremely

difficult to make a precise argument out of these loose
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remarks, proving that for a staticnary normal process with

. by 5 . - . .
time %, the following two conditions are equivalent:

(1) Tor all (or just for almost all) *pasts ®
N {6,6=1, ... | . - .
(XT, Xp_qs +e0 ) € R ’ ! the conditional

distribution of x_ ., is defined.
+

s

/;r\i\\

plays no role, unless

2{4[_
G

whole process can be

generated by a
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34, MARKOV PROCESSES.

Let X Dbe a compact space with a denumerable base for the

topology, and let T denote an interval on IR or Z. Con-
sider a process

(x |tel) e (T, p) .

For to e T , let
2
v o, Vo and V, c L (F)

denote the subspaces of functions of the past, present and

future, respectively; that is

2

v is the space of I~ -functions, depending on

(tht < to) only ,

v is the space of L2-functions depending on Xy cnly,
o

v is the space of L2—functions depending on

(xtlt > t,) only.

Definition: The process is said to be a Markov process, if

for all to “the two spaces spaces V_ and V+ are geometrical-
1y orthogonal (cfr. page 209) with intersection V_n V+ = Vo .

Remark: For most processes, the equation V_nV+ = Vo is

satisfied (exceptions are periodical processes etc.). Thus

the essential contents of‘the definition is the geometric
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orthogonality.

Conditional independence. Define two stochastic variables to

be independent, given a third stochastic variable, if the

two corresponding L2-subspaces arelgeometrically orthogonal
with intersection contained in the third. Then, the Markov
property simply states that past snd future are conditionally

independent, given the present,

It is not hard to prove, that the above definition of a
Markov process coincides with the usual one. The definition
is merely included in order to illustrate, how manipulatidns
with L2—subspaces can replace wellknown manipulations

with sub-ow-algebras.

The strong Markov property. Call a Markov process with time-

scale [O,+<n[ a Feller-process, if it can be constructed

in the usuel manner from an initial distribution ™, of Xq

and a family of transition probsbility distributions

(
Tf}\cs’t) e P@ , s,teT, s<t , xek

(s,%)
where T

devends continuously upon its three arguments

(jointly) and satisfies the conditions

(t,t) )
Trx ’ - Ex

and (the Chapman-Kolmogorov-egquations)
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Tf}(cs’t)[";t’r) ]y - "}(cs,r) ,Setsr .

The interpretation of the transition distributions is that
",}(cs,t) is the conditional distribution of Xe oo given Xy = X,
and it is easy to prove from the construction that this is in

fact true, when the local definition of conditiocnal distributions

is applied (for x in the support of the distribution of xs).

We shall summarize some results from Tue Tjur (1972). The
results will not be proved here, since they involve sample

function properties and a non-trivial measurability problem.

Let
T X[O""m[ - [O,+oo]

be a stopping time, i.e. =& J -measurable mapping with the

following property: For any samplefunction (Xt) such that

and for any other sample funct:‘-.on'(yt) coinciding with (xt)

on an interval of the form [0, t°+e|: (e>0), we have

(7)) = Tx))  (=t).

[¢]

Loosely speaking, the condition means that the stopping time

depends on the past, and ﬁossibly on the™infinitesimal future” ,
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but not on the future. The intuitive interpretation is, that
a stopping time is a time where we stop the process (or stop
observing it), and the decision of whether to stop'or.not

is consecutively based on the observed part of the process.
For example, we may stop the.proceés the first time it runs
into a certain subset of X (open, to make T measurable),

or we may stop (say, for X discrete) at the third jump (state-
shift) of the process.

Now, define a new process (yt) from the Feller process X =v(xt)

by
x, for t < (%)
Iy i=
Xe(x)+ for t > T(x)
( Xor(x)+ stands for the right limit of the samplefunction

at t(x) . It can be proved that (with probability one) the
samplefunction has right and left limits at all points of the

timescale).

This is the stopped process; it replaces, bogether with the

stopping time v , the o-algebra induced by T , as usually
introduced in treatments of the strong Markov property. It
can be proved, that the mapping taking (Xt) into (yt) is
measurable. Moreover, it can be proved that the conditional
distribution of (xt) , given a fixed samplefunction (yg) of
the stopped process and a fixed value to of the stopping
time T , is defined for ((yg),to) in the support of the

distribution of ((y.), 7(x) ) . The conditional distribution
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can be described as follows: TFTor +t < to , the “conditioned
process ” simply follows the sample path (yg) of the given,
stopped process. After time to , the process acts as a Teller
process, given by the transition distribubtions of the original
process and the initial state y(ﬁ at time to , where y(g
denotes the constant value of the given stopped sample function
after time to; the requirement that ((yg), to) belongs to
the support is easily seen to imply that yg is constant for

t > to . In case to= + 0, the above description should be
modified in the obvious manner (then, y(g is undefined, but
not needed in the description, since the description of the

first part of the process gives a deterministic process,

following the given sample path up to time + @).

My reason for inecluding the above résult (without proof) is
that I find it a very illustrative example of the power of the
local definition of conditional distributions: Not only

does the definition work in this very complex case; it also
forces upon us a very clear formulation of the strong Markov
property: The (%o my opinion, rather obscure) concept of

a stopping time-o-algebra is replaced by an intuitively

~ simple concept of a stopped sampie function. The form of the
conditional distribution we want to end up with, tells us that
we have to condition upon the behaviour of the samplefunction
up to time T , the Yright-limit-state ™ at time T and the

time point T ditself.
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35. A CONDITIONAL DISTRIBUTION OF A BIRTH PROCESS.

ication of the natural
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(x.) = =, w

given by the

.+ @ 1is an absorbing point) in order to end up with a

irrelevant for the interpretation
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of the process since it never reaches the point (as follows

from the theorem below).

This process is called a birth process, since it obviously

describes the behaviour of the size Xy of a population
where all individuals produce children »” according to a
Poisson process, independently of each other and of

their own age.

We shall prove the following theorem:

35.1 Theorem. For almost all samplefunctions

(X‘t> & (XT, f*)

the limit

£
n
-]
e
=]
A

t=2>0 e

exists. The distribution of the so defined stochastic
variable w is a normalized exponential distribution
(density e on [0,+o[).

The conditional distribution Fwo of the process, given
w=w, , is defined for all w, € [0,+ o[, and it can be

described as follows:
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The *conditioned process »
Wo T Wo
(xf0) e (X, p¥o)
is a Markov process, defined by the initial condition
Wo -
Xa = 1
and the infinitesimal transition probabillities
\’\70 - WO — o~z ° t-
P{Xt+dt = a+1 | % = a } o~ wee -dt

P{x%, = b | x° =a}l = C for bt a, a

(and with o as absorbing voint).

Remarks: It is interesting and (to me, at least) surprising
that the jump intensity of the conditioned process depends

on the time parameter only, while the intensity of the original

process depended on the state only.

The convergence of xt/et specifies the extend to which the
classical hypothesis of exponential increase is valid in the
stochastic model: The quotient xt/et converges, but not

towards a constant. The limit depends on the rather uncertain

early history of the population. However, for large values

of t , the process becomes stable enough to allow approximation
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by an exponential curve, if a correction in terms of a constant
factor w or a time delay -logw is introduced, as indicated

by the equation w = lim xt/et when written on the forms

and Xy et—(-logvr)
The theorem was first proved by D,.G.Kendall (1966) ; the
mixture of the proposed conditional distributions was deduced
by a direct computation of the generating function for
(xt s eee s Xy ) , and the convergence of xt/et follows

n

/‘I
immediately from the martingale convergence theorem.

W.A.Waugh (1970) has given a proof, based on an expression

of w as a function of the waiting times of the process.

The proof given here is based on the fact that the processes

considered have the same backwards transition mechanism.

Proof of the theorem: For LA [O,+<n[ , let FWO denote
the proposed conditional distribution. A Markov process of
this type, increasing by single steps with an intensity de-
pending on the time parameter ohly, can always be constructed_
from a normalized Poisson process by a transformation of the
time scale. In the present situation, the measure Fwo

can obviously be characterized as the distribution of
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o1
m
, R - (e ot 3
7y LXK, ) & { L‘\J.“.‘ @] ¥ A, ¥ N
} ? 6
-4 1ren ; Se defined o 11 T e
given w = w_ 18 deilned ior aid w given
o &

-

Oy

low, suppose we are able to prove the following two statements:

The derived process

~~
PN

) e ([0 +®T*XT )
/ N Y L ';X

is a birth process, as defined in the beginning of

(2) For y-almost all (w,(x,.)) we have
v

w = 1lim e .
t - ® e

ot
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Then, the theorem follows immediately by an application of

corcllary 26.2 (page 217) to the diagram

re vl +T .
([0,+o[x X7, ) —— (X, p) —— ([0,+ o[, m)
, . Xt
(Ws(Xt) ) ———> (Xf) —> lim — (=w)
’ e
It remains to prove the two statements (1) and (2)

concerning the distribution Y

Proof of (1): It suffices to prove that for all t_ & T the

distribution of

( = Fo + T ) ( ) 0 f - \
\Xt C € L-)7UOJ D, s \,Y’«\Xt)> = ([_U,+(DLX X ’x/
equals the distribution we would obtain if (x,_) was a

birth process. The former is the mixture of the

m
T

W T 4 w 3 (%"
(‘th t e u,zoj ) s (Xt) e (& ’luw)

with respect to .

Wy s M e ] ) :
xt) is a Markov process, also when regarded as

a process going backwards in time. This means, that the

The process

~

. . . - ro W . c s . »
distribution of (x t € |0, ) is specified by a »final *
t 7o Y _—

1

distribution (the distribution of x, ) and a bacwards



transition mechanism.

The distribution of x, is easily computed: If (y

denotes a normalized Poisson process, we have

= at ~ 'SJ{ + A - ot
= a3 = L yw(auo ,l\ +7] a
M )
.
2 { v 1 + A
1 -wie “Y=7) 7. Ta 8= P
= —_— Yo (w(evo=1)) , a = 1,2,
571 )

P{x; 4. = 2] %, = a+1 }

t-dt_

1 ~w(e 1) + t-dt _ yya=1
4 - a3
. w-ﬁt—dt-d’* . T_a_qj‘! e \W(v 1))
= e A" T
1 -w(e -1 .t \\a
= e ( ) (m(e -1))
& a
= Wee «dt.—5 . = — +dt .
;w(e“—ﬁ) G-

It is crucial, now, that the jump intensity a/(ﬁ—e't) does

not depend on the Yparameter ® w ; this reduces the mixing
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of the measures Pu to a trivial matter: Since only the
?final * distribution, but not the backwards transition
mechanism, depends on the mixing parameter, the mixture comes
out, simply, as the Markov process with the same transition

mechanism and with the mixture of the final distributions as

its final distribution (if the reader does not recognize

this result, just translate it into a *»forwards » (and well-
known) statement).
Hence, the distribution of the derived process {:{{,) is
given by the bacwards transition mechanism
a
=a | X = a+l | =~ — < 4t
1-e 7
given (for t:=t_) by
given (for o’
W
- W . W -W5.
P{x, = a} = nlP{x, = at],, = x Pixg = a} e "dw
" 1R
0
(CC A t
! e )
-vi(e -1 ; a=] =W
_ — o ) (w(e®o1)) dw
),« (a=1)1
A TGD +
i + P A A4
va=1 \ a-1 ~-we
= = (e”=1)°¢ } \ w e dw
(a=-1)1 J
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® .
v
\a-1 -we
= — (e’w) e d(e” w)
t
€ 0
1 . . .
= ————— (e YT e { @ ) !
ANy ' T tia-1 .t &~/
=] Le e
PR -
—t . a=] -
= | = ) e .

The forwards jump intensity can now be deduced:

Plx,  j.=a+h]
P{x = a+1] x a} = Pi{x,=alx =a4 T} o
Kpeat Al A T TR ReaT Y Blx e

a.dt e_tfﬁ~e t)a
~ = a.dt .
-t -t _~tya-1
1-e e "(1-e” )"

1}

7
o

~
[
4]
<
(0]
H
>(i
1]

Since we obviousl 1 , we conclude that

i

the constructed process (Xt> is a birth process.

In addition, we happened to run into the distribution of

X in a birth process:

t

P{x, = a} = e F(1-e"F)2 , 8= 1,2, vu.

Proof of (2): In view of the definition of y as a mixture,

we need only prove (according to theorem A 22, page 352 )
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that for all w > O we have

lim -3 = W for }vaalmost all (x;) .

Introducing the representation of by a FPoisson proce
), we must
1
= almost surely.
This is elementary: TFor w> 0O , homogeneous *’
parameter s = w(e '=1) diverges to o for t-w® , and so
it for almost all Poisson-samplefunction
(y.) we have
=]
g \/S"“i
lim = = W
. S, 4
S = O =+
W
or
= 1.
T
the
s
rge
—
ction \\\-\
o “r . e:"JS T T T T T
of s , the quotient — S, S, Sz Sy Sc
S i < ; /
looks approximately W I "
=
) T, T, T3 T, r‘5 To
like this:
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26. CONDITIONING ON A SUM OF INDEPENDENT VARIABLES.

Conditioning on the sum of two variables. Let F1 and F2
be probability distributions on IR , and consider the product
measure W := ’A,‘Q }12 on IR2 . We are interested in
sufficient conditions for existence of the conditional

distribution of x5 given x,l+x2 = ¥ .

First notice, that if F4 and F2 are given by densities
fq and f2 with respect to Lebesgue measure, then, under
weak regularity assumptions, the conditional distribution is

defined and has the density
J - 1 -
n(z) = =3) fq(Z)fe(y z)

with respect to Lebesgue measure (cfr. section %1, page 260-

261).

The following theorem shows that only one of the two measures

P4 and P2 need be wellbehaved:

36.1  Theorem. Let F1 and F2 be probability measures

on IR and consider the stochasbtic variable

(X,' ) Xz) E (]R29 P1® }‘2) .




Section 36 -307-

Suppose that Bo has a continuous, bounded density fg
with respect to Lebesgue measure.
Then, for all T, € IR such that
gly,) = }1,‘[1“2(370—2,)]3 > 0,
the conditional distribution of x, , given X, +X, =¥,

Notice that the function g is simply the density of the
t

distribution of X, X, (the convolution of Fﬂ and p. ).

Hence, the theorem implies that the conditional distribution

is almost everywhere defined.

Proof: Let 4 denote Lebesgue measure on IR . For B- Yo o

we have for any X ( R)-function k

B Br, ,
Pk = (@ p) (=) (o

3
13%o)
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_ 2
( Y1.(
( pag® po) [0 +x00] (4 o)
1%
B(Lﬁxzﬂxjx

Dividing nominator and denominator by AB we get (by the

s

{

translation invariance of Lebesgue measure)

For B-»y_. , of sminator and denominator
converge to
- = Ne + \
k(x, )f(y -x,)
“ 2N 0T
and Ty -%x.)
P O |

respectively. It is not hard to prove, that this convergence

is uniform on compact sets (just apply the uniform conti
on compact sets), and, since both integrands are

bounded (uniformely in B) and H? is a bounded measure, w

e
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1ok - Fﬂtk(xq)fz(yo‘xﬂ)]i,]
B>y, ol |:1‘2(570_}{4 ] X,

and the theorem is proved.

Remark: The result can easily be reformulated as to concern

existence of the conditional distributions of (x,l,xe) or

X2.

Conditioning‘ on the sum of n identically distributed wvariables.

- Let ’.l be a probability measure on IR and consider the
stochastic variable

) | e (]Rn,’.l.a... 0'&).

(x,], vee s x,

We shall study the asymptotic properties of the conditional

distribution of X, given

Conditioning on the expected value. First suppose that

Ex; = F[x]x = vy, = 0.

In this case, a heuristic argument exists: Think of Xqseees
x, as measurements of some property of individuals in a popula-

tion, with known distribution B What does the information
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X = 0 tell us about the first individual of a very large
sample? Intuitively, the answer is: Nothing. The mean X
is going to be close to O anyway, due to the condition

Ex; = O and the law of large numbers. If, say, a very large
sample mean X was observed, we would, by accident, have
drawn a very biased sample, and that might indicate a very
large value of X but a sample mean equal to or close

to the population mean tells us nothing. Hence, in this

special case, we suggest that the conditional distribution

of x

4 converges to the unconditiocned distribution |

Very strong regularity assumptions must be imposed in order
to make a true statement out of this., It is easy to construct
examples, where the statement is completely false. Suppose,
for example, that M is concentrated at the three points
-2, C and |/3 , with probabilities 1/(2br5),
1- 1/(2Y2) - 1/(2)/3) and 1/(2|/3) . Then, from the infor-
mation X = O , we conclude that all observations of the
sample are O; in particular, x1=O. In fact, the sbtatistic

X contains information about the complete sample, except,

of course, for the order of the observations.

If we assume that p has a density f with respect to Lebesgue
measure, a more refined heuristic argument can be given:

Let f denote the density of the distribution of X +...+x, ,
i.e.

bl 1= f* ,,.xf .
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Then, by theorem %6.1, the conditional distribution of x

A}

given x1+(x2+...+xn) = 0 , has the density

'f_n%?ﬂ Fn (7202 0xy)

with respect to Lebesgue measure. Now, if the convolution
fn—1 is reasonably smooth for large Qalues of n, so smooth
that we can regard it as a constant;fthe asymptotic density
of the coﬁdipional‘distribution of x4 becomes const-f(xq),
or _f(xq). This argument indicates the sort df regularity

conditions required fér the exact proof:

36.2 Theorem. Let Xy eee 3%y be iﬁdependent with

distribution F , and suppose that P has mean O and

variance 1 %

Further, assume that F has the density f with respect
to Lebesgue measure, and let fn denote the density of
the distribution of Kpteo oty o Suppose that fn is
continuous and bounded for n bigger than some ng -

Then, from a certain stage n » No , the conditional
distribution

.C(x,| | R T o)
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is defined, and for n-®

L(xy | xqv cee 4, = 0) > p .

Remark: The condition that fn be continuous and bounded
from a certain stage is satisfied if f belongs to L?(Im)

(and so, in particular, for f bounded). Then the character-

istic function @(s) = F[elxs]x is also square integrable,

and so 492 is integrable and f2 thus bounded and continuous

(see Feller, vol. II, XV.3 Theorem 3).

More precisely, f is bounded for n Dbigger than some n

n (o]

if and only if er is integrable for n Tbigrer than some

oy

Conversely, for fn bounded and continuous, let %n denote

For ?n. integrable, fn is bounded and continuous.

A A .
the function .fn(x) = fn(-x) ; then £ » f = is bounded,

continuous and symmetric with characteristic function |Q|2n,

2n) is integrable (any characteristic

and thus |?|2n (and so @
function 2> O of a distribution given by a bounded density
is integrable, see Feller, vol., II, XV.3 , the corollary to

theorem 3).

Proof: We apply a density version of the central limit theorem:
Under the assumptions we have imposed on £ ,it can be proved
that the density function |/ £ (z)/m) (for the distribution
of (x1+...+xn)/brﬁ ) converges uniformely to the normal

density:
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on 5¢ 215
PR 1 -25/2
|/ £ (z/n) - ——c¢ =1 =20
n* ot !
/2w
z & IR . The theorem can be found
vol. II. XV.5, theorem 2 (1.ed. page 489, 2.ed.page ©1
the is not difficult.
Since we are more interested in the function f

form

1 ~ \ -2 cn
\/7 £ _(2) —}7%: e %/ > 0
- I/ 2
uniformely for z = IR . It follows
bigeger than some N we have
fn p is bounded and continuous
| n-7
£ (0)> O

for all =z

L V=1 £ .(z) £ 1

Hence, by theorem 36.71

N\
/
Vi

is defined

X piven X +(X,t...+X = 0
1000 1 ( 2 n Vs
and given by the density
f (-
n-1° z)

£(z)
fn(O)

the conditional distribution of

for

in Feller,

5

N

)
/

we write

no> NO

with respect to Lebesgue measure. For k e K (R) we get,
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by the dominated convergence principle

Ve

———— \£f,_(~2)f(2)k(z)d
/5 1.0 X nq (-2)£(2)k(z)dz

o (et & >

n

L X—L £(2)k(z) dz

S - £(2z)k(z)d = uk ,
Y = X(Z)(z)z P

and this proves the theorem.

Conditioning on a biased value of the sum. UNow, let us see

what happens if we condition on a biased value of X, i.e. a
value different from the mean I X5 . The answer is fascinating:
The conditional distribution of X, s given ZX=y, converges

to a distribution given by a density of the form

const-e 31

with respect to the unconditioned distribution B the para-
meter a 1is determined such that the mean of %, in the
limit distribution equals the biased value we are con-

ditioning on.

Obviously, this result requires very strong regularity conditions:
Theorem %6.2 comes out as a special case, and the existence
of the proposed asymptotic conditional distribution is also

a restrictive assumption.
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Firstly, a heuristic argument will be given, in order to
explain the somewhat mysterious occurence of the exponential
function: Suppose we can choose a such that the function

e®*1 is }A—integrable and the probability measure

| . a ean‘ 3
)‘a P[eale]x/IE JX,] )l

has vy, as its centre of gravity. Consider the n-dimensional

stochastic variable
n
(Xgseeenx ) e (R, f,@... @ Ba) -

Then; according to theorem 3%6.2, the conditional distribution
o g . ;
of x, , given -ﬁ(x1 F el + xn) = ¥y, » exists and converges
to Pa , under suitable regularity conditions. MNow, the point
is, that the conditional distribution , given the mean, does

not depend on a : For B 7 the conditional distribution

0 A
of (xq, ce ,xn) , given %(Xﬂ + el * xn) e B , has the

form

conste. 1Bo~[ea(xq+"'+xn)](x1’...’xn)-(ye...cy)

where

B, . {(xq,...,xn)|%(x1+...+xﬁ) e B} .

For B- To 0 the density ea(x1+...+xn) is approximately
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constant on the set Bo , and that makes the limit measure
the same as we Qould get for a = O . Hence, multiplication
of p by the density const.e®™® transfers the problem to the
“central » case covered by theorem %6.2, without changing

the conditional distributions.

The crucial peoint of the above argument is an application of

a very simple result stating that

Multiplication of a distribution by a density does not
affect its conditional distributions, if the density is
a continuous function of the statistic we are conditioning

Orli.

Among statisticians, an immediate consequence of this result

is known as Neymann® criterion for sufficiency. The proof is

immediate,

The property of the exponential function that makes the argument
work is expressed by the fact that multiplication of the
factors of the product measure IAQ.;.Q}L by the exponential

density amounts to multiplication of the joint product measure

by a function of the sum: The product 1, e%n is a

function of KgteootXy, o

It remains to give an exact formulation of the result:
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326.,% Theorem. Let a function

L2’y

: R- [0,+o[
be given. Then, the real numbers & ,such that the function

[ f(z)e“%]Z

is bounded, constitutes an interval. Let A denote the

interior of that interval., For all a € A , the function
[£(z)e®"],  is then integrable with respect to Lebesgue
measure; define
(P:A-)]R
by : az
@ (a) = f(z)e®“dz .
¥or a e A we denote by Fa the probability measure

given by the density

£.(2) := 75%37 £(z)e??

with respect to Lebesgue measure. For all a € A , the

mean

palzl,

is defined, and the mapping
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25 pyld,

A- TR

is continuous and strictly increasing. Hence, the image

of that mapping is an open interval

For all] y e Y and all € A, the following statement
o ] >

Let Xgs woe 5 X, be independent, stochastic variables
with distribution By . Then, for n bigger than some
I =0

n_ , the conditional distribution

(i.e. a 1is the ™parameter ™ corresponding to the value

y we are conditioning on).

This theorem is, essentially, a special case of a theorem due

to Per Martin-L8f (1970). We shall study his approach in
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section 37.

Proof: Let 2, and a8y 5 34< 35, be two real numbers

such that the function f£(z)e?? is bounded for a=a, and

a=a, . Then, it is obviously bounded for a between a,

and a, , as for a e‘]aq, a2[ we have

f(z)e??

(f(z)eaqz)é(a1-g)z < cPHst.’(aﬂ;a)z

and f(z)e?? (f(z)eagz)é(ae-a)z < const-é(a2"a)z .

Moreover, we see that f(z)e?? is integrable, and even that
z-£(z)e?? |, za-f(z)eaz etc. are integrable, since £(z)e??
is dominated by a function pieced together of two exponential
tails. The argument shows that the set of points =a such
that £(z)e?? is bounded constitutes an interval, and that

the density
fa(z) = 7§%Ejf(z)eaz o @(a) = Sf(z)eazdz

defines a probability measure Ra with mean, variance etc. for
all a in the interior of the interval. It follows from the
dominated convergence principle that the mapping Q:A->TR

is continuous, and similarly that the mapping

a - rxa[zl]z‘ = gz fatz)dz"

is continuous. In order to prove that this mapping is strictly
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increasing, just differentiate with respect to a (the derivative
is obviously defined, by the dominated convergence principle):

az
Ez-f(z)e dz

. d
é%gz-fa(z)az = Iz

&f(z)eazdz

the derivative is strictly positive, the mapping

e
Z -» Xzia(z)dz is strictly increasing.

The interesting part of the theorem follows immediately from

theorem 3%6.2: For y e Y , the density [Eq(z—wﬁ]” (where
< <
&zfa/z)az = ¥y ) satisfies the conditions of theorem 3%¢.2
(except that the variance need not be 1, but obviously that

7 | ’ _ ’o N . .n N
fxxﬂ; X 4. .. 4X =0y) (xg50000%) & (R, po...op)

is defined for n Dbigger than some 0, and it converges to

Fa-' From the same stage the conditional distribution
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L

~~

. B n
quxﬁ’h..ﬁ—xn = ny) , (x,],...,x‘n) e (R ’Pac? ...®}1ao

(=]

s defined and equal to the one above (cfr. the remark on

page 316), and this proves the theorem.
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37, EXPONENTIAL FAMILIES AND BOLTZMANN’S TAW.

Per Martin-L8f (1970) proves a more general version of theorenm
36.% (page 317). His regularity assumptions are slightly
weaker and the one-dimensional measure p 1is replaced by an
n-dimensional measure. Strictly speaking, our proof is

not much different from Per Martin-L8f’s proof; also his

proof depends crucially on a density version of the central

limit theorem, as did the proof of theorem 3%6.2.

Boltzmann’s law. Martin-L8f’s approach to the problem arises

from his attempt towards an application of statistical-mechanical
principles to statistical problems. His result can be sketched

as follows:

Let 2 Dbe a measure on X , and let
t:X =E

be a mapping into a finite dimensional vectorspace E .
Suovpose that for all n we have a decomnosition (cfr.
page 36-37)

(22

(n)
2o (Ml eB))

of 2@...8A with respect to the transformation

t : X3 E
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t(XpaeeerX)) = %(t(x1)+...+t(xn)>

such that the measures ’)ép) are probability measures.

for

Let an) denote the distribution of x1

(x19-°°3xn) € (an 2;!1) ) .

(n)

Then, under suitable regularity conditions, }ly con-
verges to a distribution p, , given by a density of the
form

a(t(x))

const.e

with respect to A , where the »parameter ” a is a
linear mapping

a: E~» IR

determined by
A [t(x)ea(t(x) )] .

A [e2(E)
X

Similarly, the distribution of (x1,...,xk) (for k

fixed) converges to Pe® - ® Ry for n=->o© .

Theorem 36.3 comes out as a special case for X=TR , A= By -
‘ (o}

In statistical mechanics, a version Qf the above result is
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known as Boltzmann's law. For a large system of particles

(typically, the molecules of a gas in a closed container)
the behaviour of the system can be described by the uniform

distribution on the energy surface in the statespace. The

behaviour of one molecule (or a small collection of molecules)
is then described by a projection of that uniform distribution.

But according to Boltzmann’®s law this distribution can be
a.B

described by a density of the form const-e , where I

denotes the energy of the particle considered.

Per Martin-L8f proves the theorem under certain regularity

conditions in the two cacses

>>
1]

n .
=R s Lebesgue measure

and. X VA

>
it

s Counting measure .

His regularity assumptions seem to be indispensable. However,
it is somewhat unsatisfactory that the two. cases ¥=T]" and
% = 2" require seperate proofs. It is possible to formulate
a more general version of the theofem, which seems to contain
Martin-L8f's results as sbecial caces (though not as immediatg

corollaries). The regularity corditions are existence of the

proposed limit distribution Fa and an eguicontinuity con-~

O .
dition cn the functions Yy —= gn) y N o= 1,295,000 o

But first, the relation of the results to mathematical statistics

will be explained.
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Exponential families; sufficiency. Recall that a statistical

model is a family ( Pa‘ a € A) of probability measures on
a space X ; the idea is that we want to draw inference
about the (unknown) parameter a from the observation

x e (X, p) .

By an exponential family we mean a statistical model where

A 1is a subset of the dual to some finite dimensional vector-

space E , and is given by a density of the form
Ma

a ca(t(x))
¢ (a)

a(t(x))

= const-.e

with respect to a measure 3 e M (%) , where t:X-> E is
a given transformation. Then, the normalizing factor is given
by

(P(a) - A [ea(t(x))]x .

A transformation

s:X=» Y

is said to be sufficient in the statistical model ( PaJaEA)’
if the conditional distribution of x & (X,;xa) , given

s(x) =y , does not depend on ‘a . This means that s(x)
contains all information about a, the remaining “conditional

experiment ¥ x e (X, Fay) being irrelevant.

Obviously, the transformation +t occuring in the exponent
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in the definition of the exponential family, is sufficient
(if the conditional distributions are defined; this is a
consequence of Neymann’s criterion, cfr. page 316). Moreover,
exponential families have the following nice property: Re-

peated, independent sampling gives rise to the product model
aan
Cpylaet)® = (p@...8p fach)

with sample space X x...x X ; the form of Ky obviously
ensures that the product model is again an exponential family,
with

t(x1)+...+t(xn)

as its sufficient statistic. This means, that combination
of samples is easy: The statistics corresponding to the

samples should simply be added.

It is a conseguence of Boltzmann’s law that exponential families

have the following property, under certain regularity conditions:

For large samples Kis eoe 5 X the conditional

n k]

distribution of x, , given the sufficient statistic

/]
t(x1)+...+t(xn) , equals the distribution Ra of the

model with Fa(t) = %(t(x1)+...+t(xn)), independently

of the true value ao of the parameter.
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I am not in the position to explain why this should be a
particularly desirable property; however, the consequences

of this.property are fascinating, and seemingly closely
connected with the fundamental concepts of statistics: Changing

the parameter a amounts to conditioning on a biased value

of the sufficient statistic in a large sample.

The statistical-mechanical approach to statistics. Per

Martin-L3f’s approach to mathematical statistics is not ex-
plained by the above property of exponential families. He
suggests that the model should be specified by a measure
(Lebesgue measure or counting measure) and a statistic ¢,
playing the role of sufficient statistic. The first description
of the model is in terms of uniform distributions on level
surfaces of the sufficient statistic, and the classical
?parametrized ” models come in as a secondary tool, via

Boltzmann’s law.

Example: For X = R, A = Lebesgue measure, consider the
statistic ’

t:X=> R (:= E)

defined by

t(x) := x° .

This model is determined by the choice of Lebesgue measure as

"underlying measure  and the regquirement that the square

sum x,12+...+xn2 should be sufficient, when a sample of n
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independent observations is given. A decomposition of

26...012 with respect to the transformation
. i
tn' R > R

N 2 2
tn<x1"“’xn) = %(xq toootX )

is given by theorem 15.1 (page 130); A trivial modification

changes the measures on the level surfaces to probability

measures. Thus, we have a decomposition

(22 » (A v elo o) )

of 1®...8A with respect to t, such that ’/\;n> is

the uniform distribution on the sphere
78 3 { /]' 2 2\ ]
Vny) = eea3yX =(X, "+...+X =
Sn_/}\‘ nJ‘ {(Xqﬁ 3 n)‘ n( i n f

By the formula on page 277

P

a uniform distribution on a

(n)
(the distribution of x, for (X ,...,X)) e (R’%, 2.7 ) )
has the density
A x e XE/ n‘;
- , § J
—Rze kq_(__l_)g ) 2 = const.(1- 13 ) 2
e ny \hy i

with respect to Lebesgue measure on the interval ]qu < Y ny
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In this simple case, a direct proof of Boltzmann'’s law can

be given, as indicated by the approximate formulae

2, n- 2
x1/y)2§é X1/y)n/2

const- (1~ = 2~ const.(1- —
X.’?I/Zy n/2 | -X '2/2V
= const- (1~ —375—) ~ const.-e” "1 /& for n=® .

Thus, the corresponding parametrized model is the family of
normal distributions with mean O and variance y . The

natural parameter is a = - é% .

Our version of Boltzmann'®s law looks like this:

27.4  Theorem. Let A be a measure on X , t:X—- E

a continuous mapping of X into a finite dimensional

vectorspace E , and (for all n)
3 (n) T
Ay, APy e T

a decomposition of 71@...@4 with respect to the trans-

formation

LA CHNE R IR CTC I SIC W)

such that (4 gn) | v e t, (X)) is a family of probability
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measures. By ug“ we denote the distribution of X,
Iy N QZW)
for (x, , .. X ) e (x MY
4 ~ 1 ] ] n’ AN 3 7 /
Let
8, ¢ E-> R
be a linear mapping such that
/ /)t- a { /X\‘\-‘
o (a ) v = A o\ VAR SS <
@ (a ) : Ale s Ix + @©
and define
RN
PO — i RIS,
M ag Pla,) X
0 o
Suppose that
F T
Vo = Pa LFX4
o]
of t(x) for xe (X, ? ) exists.
* Ja
o}
Further, suppose that the following condition is satisfied:
For all € > O and for all k e K (X) there exists a
neighbourhood V of Yo and a number n, such that
(n) (n)y g < - ; n
u i’k - i ki< € for n»n_ , ’ e V.nt (X)) .
ETLY’ :U}' i\ z o ! J y J o n
Then, ;A%H) converges to Fa as n->® and y-=> T,
i [o}




in the following sense: Yor &> 0, k e XK (X) , there
exists a number n, and a neighbourhood V of ¥y

such that

Thus, for any seaquemnce (yr) such that o = lim y_  and
(n) -
y.oe t (X7) , ve have M > H_ . JIn particular,
n I /Iy b 8gq

) -
if F;“’ is defined from a certain stage (or just for

v : ’

N (n
infinitely many n) we have ’1t ) > K, .
7 o ag

Proof: Consider the stochastic variable

tr
v
4

r AY
1

we denote the distribution of

By the decomposition criterion (or by theorem 7.1, page 38)

. n 3 v (n)
tn. (X ,,18;9 ,..@}Aaa, - (E, fao )

3\
has the conditional distributions A 2/ for y e tn(Xn) ;

4 ~~

thus, the projected measure Ha equals the mixture of the
o

tn(xﬁ”"’xn} = H(t(ﬂq)+..,+t(xn))f
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N\
n) with respect to véh} .
0

&~

projected measures M

Let €>0 and k € X (X) be given. Choose a neighbourhood

V., of ¥ and a number n, such that

Q

7 N\ Vs Y o —
a \ 1) - (nj, s £ . 3 o e U Nt I8
| Pso k py k|l < 5 for n » n, , ¥ ,5ye Vguzn\x )
By the law of large numbers, we can choose n,> n, such that
(n) £
v;n‘{v ) > 1 - - for n3» ng ;
(o) - <
o N 21k
el o
Mo £ . = U N ¢y we hav
Then, for n2>n, , ye vVt (X7), we have
| u, k (n) |
' - N’k = i
| R ]
f{ N\ 7/ 7
n)r ‘o3 V] \n> njy 17
\< Va L’!J \J | }1‘73 £ _}"v "t.if;.’
o ° J 3
/Tl; 4 7 Yo \ﬁ) (n)
+ Va [/l ‘\x»r \y " }13’73 k - luy kl]y’
(o} o
3 [ i
. + -_ ik = &
€ 13 T el o
@®

This argument proves the theorem.
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topological space is said to be

Hausdorff space, and there is a

3 3 < i +h £ o aan - W 1 P .
X, Y ete, 1 he following are assumed to be locally compact,

The following spaces of realvalued functions on X are con-

<€ (X) the continuous functions
Cb(X) the bounded, continuous functions

K (X) the continuous functions with compact support
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the support of the KH(X)-function % . Then, there
exists a representation

k = k1 + ... kn

of k as a sum of finitely many K (X)-functions L

each having support contained in some set from u.

Measures. A (Radon) measure on X 1is a positive, linear
functional

posKE - R
(positive means, of course: k > 0 => Fk > 0 ).

' The set of measures on X is denoted M (X) .

The weak topology on H(X) is the topology induced by the

mappings
Koo )Ak
k e }(X)
ME) > R

The set M (X) and its subsets c"(b(X) ‘and £ (X) defined

below are always regarded as topological spaces in this topology.

A measure p is said to be bounded, if it is bounded (as a

linear functional) with respect to the supremum norm. We
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write

it

sup {pk | f[xlf 5« 1}

el or gl g

for the (operator-) norm of B also called tne total mass

of F -

Measures of total mass 1 are called probability measures.

By oﬂb(x) and P {(X) we denote the set of bounded measures

and the set of probability measures.

A 3 Theorem. The set
fpe MO (s 2}

is compact., If X 1is compact, also # (X) 1is compact.

The support supp 2 of a measure M is the complement to the
union of the sets {x|k(x)> © } , where k 3z O, pk =0 .
The complement of the support can also be characterized as the

greatest open null set { "null set * is defined later).

A discrete measure is a measure with finite support; or,

equivalently: A measure of the form

n
T aik(xi) (a. » O) .

1=7 +

H k
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The one point measure £ at x is defined by

thus, the discrete measures can be described as all positive

(finite) linear combinations of cne point measures.

A 4 Theorem, The set of discrete measures is dense in

M(X) . The set of discrete probability measures is

dense in £ (¥X) .

Product measures,

A 5 Theorem. Let g e X (XxY) be given. Then, there
exists a K (Y)-function b, , such that for all x € X
and for 211 €>0 , there exists a neighbourhood U of

X, with

|S(Xo , ¥) - slx, ¥)| < E-ho(y) for xelU,yeY.

A6 Corollary: The mapping
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pev = ¥ .
A 8 Theorem The mapping
{}u s V) > M @Y
/4 7\ (7 ~7 N £y
M (X)x uﬁu; > J(XxY)
is continuous.
\ . - TP i YPEEN . i e
A O Theorem. For ped(X) , v e M) T e () ,
we have
U @(v @ ) = (H®v)e T
i 7
under the natural identification Xx(YxZ) (XxY)xZ ).

Piecing measures together,

an open subset

U

of 2 to

extengion

of X

is defined as follows:

. The

Let P be a measure on

restriction

& uﬂ (U)

For

he K(

X
Ll |

),

U

the
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and a set M of ?({X)—fumcticns$ we write

M4t
if M is upwards directed (for k’ , k¥ e M there exists
kel such that k 3 k*v k» ) and, for all x

The u-norm (or the “-norm) \if%%Q (or i§f%§7 ) of f
/ norm . H
is the greatest lower bound of the numbers
sup pM , Mc KX , M7P > |f]| .

Hotice, that we may have £ HF = ® , and also that we may
have |[f{], =0 for f 4O .
Now put

p P ! {2 1

S P= *‘.A—}Z:: if Hg < + @ S

=
=
=
p
"
P,
Hy
5
4
=
"
(&}
.

e linear

)
H

It is not hard to prove that S(P; and Nyy)

<
V.S
subspaces of IR .

ct

Restricted to the space B(u) , the p-norm becomes a semi-
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A null-set is a set of measure O . It can be proved (from
the monotone convergence principle below) that a function
is a null-function (i.e. a N(F)-function) if and only if it

is O except on a null-set.

Integrable functions are, in many connections, considered

equivalent if their difference is a null-function, or

(equivalently) if they coincide almost everywhere (i.e,
everywhere except on a null-set). Equivalent functions are
identical with respect to integrals and p-norms. We may
talk about integrability of a function , as soon as we know
its values almost everywhere; a similar remark zpplies to

functions taking the values +® on a set of measure O .

The space L(p) becomes a Banach space, when equivalent
functions are identified (i.e. LQF)/N(») is a Banach space,

when equipped with the norm (induced by) || HF ).

A 11 Theorem (the monotone convergence principle). Let

(fn) be an increasing sequence of integrable functions,

such that

lim yfn < +@© .

Then, the function

f(x) = 1lim fn(x)

is integrable, and
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Then, the function

£f(x) = sup k(x)
keM
is integrable, with (cfr. page 18)
14 T - F . 0
. -;"‘ Hn 1 H}l = 9,
E T o
ke (M,g)
(and, consequently, Wuf = sup pM ).

A 44 Theorem. Any compact set is integrable. For a

directed set ¢ of compact sets (ordered

¥
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p(n®) = inf n &.

eorem. Suppose that p is bounded, and let £

be bounded and lower semicontinuous. Then, f 1is

integrable. For such a function f the mapping

U -> f&f

PX) » R
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is also lower semicontinuous.

A 16 Corollary: Tor f e Gb(X) , the marping

Pxy = R

is continuous.

Remark: Yor f 2 C , theorem 1% 1is a trivial consequence

of theorem 13, and in this case, the semicontinuity postulate
holds even if # (X) is replaced by d’ib(X) . The more
general statement in case of @ (X) follows immediately by
addition of a constant function ¢ to f (such that c+f
becomes positive). The corollary follows from this result
together with the corresponding upper semicontinuity-result.

i
leasurability. A locally compact space X is said to be

o-compact, if there exists a sequence of compact sets covering

X . In the following, the spaces X, Y etc. are assumed to

be locally compact and o-compact. This assumption is rather

unrestrictive in practice, and it makes it possible to avoid

a tedious distinction between local and global null-sets.
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Let B be a (fixed) measure on X and let
t:X= T

be a mapping into an arbitrary topological space. Then, %

is said to be measursble with respect to }l , 1f there exists

an increasing sequence (Kn) of compact sets with
g\ W) = 0
n

(i.e. the Kn’s cover almost all of X ), such that the

restrictions

are continuous.

Remark: In Tue Tjur (1972), the term ?almost continuous *
“was applied for what is here called measurable »” , to avoid
confusion with Borel-measurability etc. I have changed the '
terminology, because the measurability definition above almost
removes the need of "measure-independent " measurability
concepts. Dorel sets and Borel functions, the basic elements
of "abstract  measure theory, play a minor role in the theory

of Radon measures (namely the role of universal measurability

criterions in case T has a denumerable base).

Notice, that any continuous mapping is measurable. Also

mappings which are continuous at almost all points, or



Appendix -348-

(slightly weaker) continuous when restricted to the complement

of some null set, are measurable,

Measurability is a property of the equivalence class, in the
sense that a change of t on a null set does not affect

measurability. This is a consequence of theorem A 18 below.

Notice that if I3 is bounded, the following condition is
equivalent to measurability: For all £>0 there exists a
compact set K with P(X\K) < € , such that the restriction

of t to K is continuous.

>

A 17 Theorem. A function

is integrable if and only if it is measurable with

A 18 Theorem (regularity of Radon measures), Let A c X

be integrable, Then, for €>0 , there exists a compact
set K < A such that

fl(A\K) <E .,




Appendix =349

A set M c X is said to be measurable if its indicator

function 1, is measurable,.

A 19 Theorem. M < X is measurable if and only if for

each € > 0 there is a closed set F and an open set U

a1ieh Fha
such that

=

in

In
[}

W
o

p(UNF) < & .

~

For f, ge L (3v put
(¢le P
(Elgu = #(f'g) .
This defines an inner product ( | »1 , giving La(y) structure

as a Hilbert space. The norm is called the 2-norm , written

Ith, = V&, -
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Transformation. Let M be a measure on X and let

t:X=> Y (Y locally compact and o-compact)

be a }A—measurable transformation such that

My 4 3 , ) 3 \ 3 =~ - S I
The transformed measure U(F/ e ud(‘) is defined by

A locally integrable function is measurable.

A density d 1is a locally interrable function d > C .

a density 4 , define the measure d.p on X by

~
Q
.
=

s
w
"

p(d.k) .

Mixture. Let
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for all *h

- A - . N
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A 21 Theorem, Let d3>»0 be locally F-integrable. A

function f on X is (d»ﬁ)—inteqrable if and only if

d.f 1is p-integrable; if so,

(dep)f = pld.f) .

h=g
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P[ VXG-ZJX = <)‘t[ Vx‘}x); °

A 2% Corollary (Fubini’s theorem). Let g be a pev-

integrable function on XszY , Then, for }L—almost all
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be a family of compact spaces, Then, the product space

is compact (by Tychonoff’s theorem). For I, < I , put

XT = . TT Xl .
iequ

For subsets I, and I, of I such that I, <1

denote by

pr + + X - X,
12.L,% Ig 1,
the projection
pI2 (Xill‘512> = <Xll1“—=143 .
I, 1

Now, let P be a probability measure on XI and let 9;

denote the set of finite subsets of I . For M e ?; , put

.
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Pw = Pmbr -

The family (,AM| M e 9;) of finite dimensional marginal

distribut

condition

ions for satisfies the following consistency
1

Pun P = My -

Conversely, we have

4 24

Theorem (Kolmogorov's consistency theorem). Let

Py =
Then,

such t

(}lM‘ M e 92) be a family of probability measures

ED(XM) , satisfyine the above consistency condition.
there exists one and only one measure By on XI

hat

PimPT = Kn for Me P .

This theo
functions

ordinates

kM e K(

rem relies on the fact that the space of continuous
f: XI-+ IR depending on a finite number of co-
only (i.e. the functions of the form Ky © Dy >
XH)) is dense in 7'<(XI) (= ‘C’(XI) ).
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DANSK RESUME.

Med udgangspunkt i den formulering af sandsynlighedsregningen
der baseres p& Radon m&l pd lokalkompakte rum, indfores

betingede fordelinger ved en differentiationslienende proces.

Eksistens af sadanne ,,lokale »” betingede fordelinger punktvis,
overalt eller n®sten overalt, diskuteres i nogle specialtil-
fzlde, herunder i tilfzlde af smdvanlige ,,kontinuerte » for-
delinger p& reelle talrum (differenfialgeometrisk formulering)
og 1 tilf=zlde af stokastiske processer, Lokale betingede
fordelingers globale egenskaber diskuteres. Herunder vises
det, at nmsten overslt definerede lokale betingede fordelinger
har de egenskaber der forudszties i1 den smdvanligvis benyttede
definition., Forskellige regneregler for betingede fordelinger
(succesiv betingning, ombytning af betingningsoperationer)
bevises. Endelig anvendes den lokale definition p& mere

konkrete problemer, hvoraf iszr kan fremhzves fglgende:

Udledning af visse fordelinger i tilknytning til den fleré

dimensionale normale fordeling.

En formulering af den sterke Markovegenskab for Feller-
processer (kun gengivet summarisk, med henvisning til

Tue Tjur (1972) ).

Bevis for et resultat af D.G.Kendall vedfarende betingning

ien fodselsprocés.
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