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Nonlinear regression, quasi likelihood, and
overdispersion in generalized linear models.

Summary. The aim of this article is to reconsider the methods for han-
deling of overdispersion in generalized linear models proposed by Mc-
Cullagh and Nelder. Our starting point will be a nonlinear regression
model with normal errors, specified by a mean function, a variance func-
tion and a matrix of covariates. Structurally, this model is very simi-
lar to a generalized linear model, except that a common dispersion (or
squared scale) parameter is a natural ingredient. In this context, we
discuss the estimation method known as IRLS (iteratively reweighted
least squares) or quasi likelihood. For generalized linear models, this
method coincides with maximum-likelihood. We discuss the proposals
made by McCullagh and Nelder for situations where such models fail
due to overdispersion. For many such models (in particular for discrete
responses), the idea of an overdispersion parameter does not make much
sense at first sight. Our approach is based on approximation by a non—
linear regression model. In particular, we are interested in the validity
of approximate F-tests for removal of model terms and approximate
T—distribution—based confidence intervals.
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0. Introduction and mathematical ingredients.

The methods for handling of overdispersion in generalized linear models,
as described in McCullagh and Nelder (1984, 1989), have created much
research activity and a lot of discussion, perhaps not so much about the
applicability of these methods, but rather about how they can be justi-
fied theoretically. Efron (1986) and Jorgensen (1987) discuss paramet-
ric extensions of a generalized linear model by a dispersion parameter.
At the opposite extreme we have Wedderburn’s (1974) distribution—free
quasi-likelihood approach, which relies only on first and second—order
properties.

The point of view behind the present paper is that parametric extensions
of e.g. Poisson and binomial models to account for overdispersion are
unnecessarily complicated, when regarded merely as justifications of the
relatively simple methods suggested by McCullagh and Nelder, and that
the distributions coming out of this may be difficult to swallow in applied
contexts. On the other hand, the distribution—free approach is too weak
if one really wants to say something about approximate distributions of
estimates and test statistics.

We shall argue that a sufficient and much simpler justification of these
methods can be based on approximation by non—linear models with nor-
mal responses. It should be emphasized that this idea does not intro-
duce conditions that are much more restrictive than usual in statistical
practice. For example, the approximate normality of the counts in a
multiplicative Poisson model is the necessary subsumed condition for ap-
proximate x2 distribution of Pearson’s classical goodness—of-fit statistic,
or the deviance that it approximates.

All models discussed in this paper will be based on the following four
ingredients.

(1) An increasing or decreasing function m, called the mean function,
which to any real number 7 in some interval (usually the whole real line)
assigns a real number p = m(n).

(2) A function v , called the variance function, which to any u = m(n)
assigns a positive real number v(u).

(3) A vector (wy, . ..,w,) of positive real numbers w;, called the weights.

(4) An n x p-matrix X = ((z;5)) of rank p. The ¢’th row of this contains
the covariate values associated with the i’th observation.

Whenever convenient, sufficient smoothness of the two functions will be
assumed. As a minimum, we need that m is continuously differentiable
and that v is continuous.



1. A class of nonlinear regression models.

Let the observations y;,...,y, be independent and normal, with Ey; =
wi = m(n;) and var (y;) = Av(w;) /w; where, in turn, the “linear pa-
rameter” 7); is specified as a linear combination n; = B1z;1 + - - + Bpzip
of the covariate values associated with the observation. The unknown
parameters of this model are the coefficients 31, ..., 3, and the squared
scale (or dispersion) parameter A. The model differs from what is stan-
dard in the context of non-linear regression in the following respects.
The mean structure is more restrictive than usually assumed, since the
dependence of the parameters 3i,..., 3, is assumed to go via the linear
combinations 7;, and the mean function is the same for all units. This
condition is not essential for the discussion to follow, it is just made here
to force the model into a frame shared by the generalized linear models.
On the other hand, the variance of an observation is allowed to depend
functionally on its mean, which is usually regarded as a speciality in the
non-linear regression context.

The log likelihood function becomes
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However, maximum likelihood estimation in this model can not be re-
commended in general, for the following reason. In many applications,
the interesting part of the model has to do with the mean structure, i.e.
the function m and the selection of covariates, whereas the specifica-
tion of a non—constant variance function v is often just a complication
imposed by observed heteroscedasticity. Hence, the functional form of
v may very well be more or less ad hoc. Only in exclusive situations,
where the shape of the variance function is well-documented or struc-
turally justified, would we really want the specification of v to influence
the estimates of the £’s in a decisive way. More often, we would prefer
the variance function to play a more passive role, similar to the role
of fixed weights in a standard linear regression situation, where a mis-
specification of the weights may result in loss of efficiency, but not in
bias.

EXAMPLE. Suppose that y;4, ¢ = 1,...,n, ¢ = 1,2, are normal with
means fi; = i, and var(y;,) = Auj,. Hence, the covariate structure is
that of a one—way analysis of variance model with two groups, the mean
function m can be taken to be the identity 4 = 7, and the variance
function is v(u) = p?® (constant coefficient of variation). Since this is
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just a special variant of a two—sample setup with variance heterogeneity,
it is tempting to estimate the two means by i, = y, and A by some
weighted average of the two quantities s7 /¢, where s denotes the em-
pirical variance in group g. This is what comes out of the IRLS method
discussed below, but it is not what comes out of maximum likelihood.
Without going into arithmetic details, it suffices to notice that s7/s3 has
an F(n — 1,n — 1) distribution with scale parameter u?/u3, and since
57 /s3 is independent of (1, %), this will obviously influence the estima-
tion of uy and pe; which is what one should expect from a method that
naively assumes the specified model to be correct. But in most appli-
cations, one would probably prefer to disregard the information about
mean structure which is directly inferred from the assumed form of the
variance function. In the present example, the obvious solution is to
estimate the two group means by the group averages, as we would do in
a model with two freely varying variances. But this method is only real-
istic in general when data can be divided into relatively large covariate
groups.

More generally, we can say that the IRLS method will only take the
variance function into account by letting its inverse values play the role
of externally given weights, whereas it will not attempt to improve the fit
of the squared residuals to the assumed shape of the variance function.

IRLS estimation. In the context of a more general nonlinear regression
model, Seber and Wild (1989, page 46) suggest the following method.
For some reason they present it as a method which is robust against
distributional assumptions, without mentioning robustness against mis-
specification of the variance function. Anyway, the method, which coin-
cides with Wedderburn’s (1974) method of quasi likelihood in a similar
distribution—free setup, goes as follows. Take as estimates of f1,...,[p
those that minimize the square sum
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when the constants v; take the values v; = v (u;). Notice that this
is not equivalent to minimization of the expression when the varying
quantities v (u;) are substituted for the v;’s. What we mean is that the
estimates of the linear parameters n; = 311 + - - -+ Spxip should satisfy
the equations
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for j =1,...,p, which are obtained by formal differentiation of (1) with
respect to f1,..., 8, when the v;’s are regarded as fixed, followed by
substitution of v (u;) for v;.



The nature of this definition immediately suggests a method for compu-
tation of these estimates, which justifies the name “iteratively reweighted
least squares”. Algebraically, this method is equivalent to the method
proposed by Nelder and Wedderburn (1972), which enabled them to
solve the likelihood equations of any generalized linear model by an iter-
ative procedure, where each iteration was formally equivalent to the solu-

tion of a weighted regression problem. Let u(k) = m(nl(k)) = m( §k)mi1 +

k3
e Bék)a:ip) and vl(k) = v(m(ngk))) denote fitted values and estimated
variances after the k’th iteration. To obtain the next guess, we proceed
as follows. Linearize the mean function by Taylor expansion to first order
around the present values ngk), ie. m(n;) ~ ugk) + m’(nl(k))(m - ngk)).
Substituting the linear approximations for m (n;) in (1), while at the
same time replacing v (m (1;)) with v(m(ngk))) (since the variances can
be assumed to vary slowly when convergence is approached), we obtain

the weighted square sum
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The next set of estimates ngﬂ), cee, ,(,k+1) is obtained by minimization

of this approximation to the square sum (1). The last expression for
it shows that this minimization is computationally equivalent to the

solution of a weighted linear regression with observations ngk) + (y; —
,ugk))/m’(nl(k)), weights wim’(ngk))Q/vl(k) and covariates as in the original
model.

Once the linear parameters are estimated, we estimate the dispersion
parameter A\ by

i1 w; (y; — i)
W T e

which is merely the usual estimate for the proportionality factor A in a
model where the estimates fi; are regarded as the true means, with the
usual bias correction to compensate this assumption (division by n — p
rather than n).

Asymptotics. The asymptotic theory for nonlinear regression models can
conveniently be based on the assumption A — 0. Clearly — by reduc-
tion to group averages — this also covers an asymptotic setup where
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data are sampled in finitely many covariate groups of sizes that increase
proportionally towards infinity. Intuitively, it is also rather obvious that
similar things will happen when the number of units tends to infinity
under suitable less restrictive assumptions about the behaviour of the
covariates.

We can summarize the asymptotic theory as follows.

Approzimate inference in the non—linear model, including confidence
limits for contrasts or regression coefficients based on the T—distribution,
F—tests for removal of terms from the model etc., can be based on the
usual interpretation of estimates, analysis—of-variance table etc. in the
analysis of the “linearized observations”

(yi — fu)

Yi =N + (7

by a linear regression model with mean structure given by X and weights

m' (1:)*

v(fi)

*
w; = w;

The proof of this is based on the geometric idea that, as A tends to
zero, the multivariate distribution of the data vector becomes more and
concentrated around the true mean vector. This means, that in the re-
gion where things happen, the approximation of the manifold of possible
mean vectors by its tangent plane (or the first order Taylor expansion of
the mean function) becomes more and more accurate, and in the limit
we simply have a linear model. Which, not surprisingly, is equivalent to
the weighted linear regression solved by the iterative procedure in the
last iteration.

Notice also that the usual variance estimate \ in the linear analysis of the
y; coincides with (4). By a similar asymptotic argument, this estimate is
approximately X%_p with scale parameter A/(n —p). Confidence bounds
for A can be based on this approximation, and so can the test for the
hypothesis A = 1 (if it is of any interest, which it is usually not in a
proper non-linear regression context).

Just to support intuition, we make the following observation. A first
order Taylor expansion of m around 7j; gives

yi —m(1;)

=Y

or
yi ~m~" (i)
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which means that the final analysis is approximately equivalent to an
analysis by the same linear model of the “link—function transformed”
responses m ! (y;) instead of the more complicated “linearized obser-
vations” y;f. This justifies well-known approximate methods, like es-
timation in logistic regression models by weighted linear regression of
the logit—transformed relative frequencies. However, in the discrete case
there are wellknown problems with this method, for example that logit
transformed frequencies have to be defined in some more or less arbi-
trary way for frequencies that are 0 or 1. This method can not be
recommended in general, but in some cases it is useful for computation
of suitable starting values for the IRLS method.

2. Generalized linear models.

A slightly modified definition of a generalized linear model, as intro-
duced by Nelder and Wedderburn (1972, see also McCullagh and Nelder
1989), goes as follows. As for the non-linear regression model con-
sidered in section 1, a matrix X of covariates and a mean function
m (whose inverse is called the link function in this context) must be
given, and the observations y1, . - ., ¥, should be independent with means
wi = m(n;) = m(fizi + -+ + Bpxip). But the normality assumption is
replaced with the assumption that the distribution of the ¢’th observa-
tion has a density (or probability function, in the discrete case) of the
form

exp (w; (yi0; — b(6;)) + ci(y:))

where 61, ...,60, are one-dimensional parameters. The “weigths” w; are
known constants, and the functions b and ¢; are, of course, also assumed
to be known. Usually, the expression for ¢; will involve the weight w;,
but this possibility is subsumed by our notation. The functions ¢; can be
regarded as logarithmized densities modifying the underlying measure.
The essential condition (which implicitely imposes strong conditions on
the functions ¢;) is that the logarithmized normalizing function b is in-
dependent of 3.

For each observation, the family of possible distributions constitutes an
exponential family of order 1. By standard arguments (see e.g. McCul-
lagh and Nelder 1989, pp. 28-29), the first two derivatives of the function
b are related to the moments of the distribution by the relations

b”(ai)

w;

wi =b'(0;) and var(y;) =

Consequently, b’ is strictly increasing, and if we define v = b" o b'~! we
have the relation var(y;) = v(u;)/w; between mean and variance. Hence,
as far as means and variances are concerned, we have a structure similar
to the structure of the non-linear regression model studied in section 1.

7



An important difference is that the variance function is determined by
the distributional assumptions, whereas in the non-linear regression con-
text we are free to choose any positive continuous function v.

Another important difference is that the dispersion parameter A is no
longer there (or it has been set to 1, if you like), and there is no obvious
way of reintroducing it. This is the topic of section 3.

Wedderburn (1974) proved the following main result, which establishes
the link between generalized linear models and the non—linear regression
models discussed in section 1.

The mazimum likelihood estimates of B1,...,0, in the generalized lin-
ear model coincide with the IRLS estimates in the non—linear regression
model (same observations y;, same X, m and v). Moreover, the IRLS
method coincides, as an algorithm, with the scoring method (modified
Newton—Raphson) for mazimization of the log likelihood for the general-
1zed linear model.

This result (which follows easily from the fact that differentiation of
the log-likelihood results in the left hand side of (2)) may appear a
bit surprising, because one would hardly expect multiplicative Poisson
or logistic regression models to be exactly the kind of models where
robustness against misspecification of the variance function is a decisive
matter. However, the robustness argument was for the normal case, and
there is really no paradox here, only a pleasant surprise.

3. Generalized linear models with overdispersion.

This has to do with situations where a generalized linear model is some-
how the canonical choice, but the model does not fit due to overdisper-
sion.

The first point to be realized here is that there exists no natural defini-
tion of such things as “a binomial distribution with overdispersion” or
“a Poisson distribution with overdispersion”. If Pearson’s x2 for good-
ness of fit turns out to be too large in a supposed Poisson model, the
unavoidable conclusion is that we must reject that model, unless we are
able to find the additional covariate or the modification of the link func-
tion which removes the extra—Poisson variation. Attempts have been
made to extend the families of Poisson or binomial distributions by a
dispersion parameter, but this turns out to be difficult, and the distri-
butions coming out of this have little intuitive appeal as candidates for
distributions of counts; see Efron (1986) and Jorgensen (1987).

Extension by a dispersion parameter is possible for the two most im-
portant classes of generalized linear models for continuous responses.
For normal models, a dispersion parameter can always be introduced
directly as a squared scale parameter (and usually it is there from the
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beginning). For (supposed) exponentially distributed responses, exten-
sion to the class of I'—distributions will formally extend the model by a
dispersion parameter, and often this is a sensible solution in case of non—
negative continuous responses, when variation in scale is the natural tool
for description of covariate dependence.

From a theoretical point of view, a generally applicable solution is to al-
low for random (typically normal) effects in the expression for the linear
parameters 77;. Random effects in generalized linear models have been
studied recently by several authors, see e.g. Kuk (1995), McGilchrist
(1994), Longford (1993). However, random variation on the “unit—to-
unit level” (which is what overdispersion could be called in this frame-
work) is a speciality in this context, the usual interpretation of random
effects has to do with positively correlated measurements on the same
individual, block etc.

Moreover, these methods are far more complicated than required when
the generalized linear model considered gives a satisfactory description
of the mean structure. The remaining problem is that ignorance of the
overdispersion will result in incorrect inference (too narrow confidence
bands, too many highly significant rejections etc.) when overdispersion
is actually present.

The much simpler methods suggested by McCullagh and Nelder (1989)
for this situation can roughly be summarized as follows. Recognizing
that our generalized linear model does not hold, whereas all sorts of
diagnostic checks (residual plots etc.) still support our belief in the esti-
mated mean structure, confidence limits and tests for model reductions
are corrected by an estimate of the dispersion parameter, which in the
Poisson and binomial cases can be taken to be Pearson’s x? for good-
ness of fit divided by its degrees of freedom. Deviance differences (or
log likelihood ratios, or the weighted square sums approximating them)
should be rescaled by this estimate, and approximate standard devia-
tions for linear parameters should similarly be multiplied by the square
root of this. In order to correct for the random variation of the esti-
mate of the overdispersion parameter, one may use approximate F—tests
and T—distribution—based confidence intervals, rather than approximate
x2-tests and normality-based confidence intervals.

Obviously, these methods can be justified as consequences of a sim-
ple approximation of the generalized linear model by the corresponding
non-linear regression model. The formal conditions for validity of this
approximation can be stated as follows.

(1) The means are as in the generalized linear model.

(2) The variances are proportional to those of the generalized linear
model, i.e. var (y;) = v (u;) Jw;.

(3) The observations are approximately normal.
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The conditions (1) and (2) are roughly those assumed by Wedderburn
(1974) in his quasi likelihood approach. Wedderburn outlined proofs of
consistency of the quasi likelihood estimates based on these conditions
only. This line of arguing can be continued to provide asymptotic nor-
mality of estimates under central limit theorem assumptions which are
weaker than assumption (3) above, see McCullagh (1983). However, for
approximate x? distribution of the estimate of the dispersion parame-
ter — and thus for the methods based on F- and T—distributions —
condition (3) is formally required.

Nevertheless, also in situations where (3) is questionable, common sense
suggests that it is better to perform this correction for randomness of
A/ — implicitely making the (more or less incorrect) assumption that
the distribution of \ is approximated well enough by a y2-distribution
with n — p degrees of freedom — than not to perform any correction
at all — implicitely making the (certainly incorrect) assumption that A
is known and equal to \. This suggestion is supported by simulation
studies of the behaviour of T— versus normal test statistics in case of
strongly non-normal responses, which will not be reported here (see
Tjur 1995).

4. Example: a log—linear Poisson model with overdispersion.

During the four summers 1992-95, The National Environmental Re-
search Institute, Ministry of Environment and Energy, Denmark, per-
formed a study (Oddersker et al 1997) of the impact of pesticides on
the reproductivity of skylarks in spring barley fields. Four fields were
treated by either conventional spraying or (essentially) no spraying in a
nice cross—over arrangement, see table 1. Many things were registered,
and the following statistical analysis clearly represents an oversimplifica-
tion of this large and complex data set. We shall focus on the summary
measure for reproductive success constituted by the total number of
fledglings produced on the four fields each of the four years, as given in
table 1.

Table 1
Field Ke Kr Ku Rd
Year
1992 31 %27 %12 27
1993 *34 60 38 *26
1994 33 *x17 *27 26

1995 x24 35 56 *23

(* means ’Sprayed’)

A model with multiplicative effects of year, field and treatment appears
reasonable here. A multiplicative structure compensates in a natural
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way for the fact that the fields are not exactly equally sized, and also
a proportional effect of the treatment factor seems natural. Thus, it
is tempting to try with a multiplicative or log-linear Poisson model,
stating that the number y,y of fledglings produced year a on field f is
Poisson distributed with parameter

Haf = exp (aq + B + 1)

where ¢t = t(a, f) ( = 1 for sprayed, 2 for unsprayed) denotes the treat-
ment. After estimation in this model, Pearson’s x2? for goodness of fit
becomes

~ 2
§ (yﬂf _ Maf) — 18-72
af Haf

corresponding to a tail probability in the x?(8)-distribution of 0.016,
whereas the likelihood-ratio test against the full model results in

—2log (likelihood ratio) = 18.98

corresponding to a tail probability in the y?(8)-distribution of 0.015.
Thus, there is a clear, though not extremely significant, indication of
overdispersion here. Except for this, there is no indication of model
failure. The plot of normed residuals against fitted values looks fine,
and in fact all the normed residuals are between —2 and 2. If we ignore
the warning and continue with the likelihood ratio test for “no treatment
effect” (71 = 12) we get

—2log (likelihood ratio) = 24.17

corresponding to a tail probability in the x?(1)-distribution of 0.000001.
An extremely convincing conlusion, it seems. The point estimate of
~v1—"2, with 99% confidence limits based on the usual normal approxima-
tion, transforms to the following statement concerning the multiplicative
scale: “The proportion between skylark reproduction on sprayed and un-
sprayed fields is estimated to 0.63, with two—sided 99% confidence limits
0.50 and 0.81”.

If, however, we take the indication of overdispersion into account and
follow the recommendations of the present paper, we end up with an
F—test for treatment effect which becomes

23.62
F(L.8) = 157378

= 10.09

corresponding to a tail probability of 0.013. Still a significant treatment
effect, but far from as convincing as it seemed to be in the multiplicative
Poisson model. In this case, one would probably tend to report the
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estimate of the relevant treatment parameter with 95% confidence limits,
but if we stick to 99%, confidence limits for 3 — 2 based on the T-
distribution on 8 degrees of freedom transform to the somewhat more
moderate statement that “The proportion between skylark reproduction
on sprayed and unsprayed fields is estimated to 0.63, with two—sided 99%
confidence limits 0.39 and 1.03”.

The method of correction by the estimated overdispersion parameter,
disregarding the randomness of this estimate, results in a “corrected
deviance”

-2 241
X log (likelihood ratio) = ng

=10.33

corresponding to a tail probability in the x2(1)-distribution of 0.0013.
Notice that this is ten times smaller than the P—value 0.013 produced
by the F—test for the same hypothesis.

5. Conclusion.

The Nelder—-McCullagh approach to overdispersion is useful and gener-
ally applicable to situations where the mean structure coincides with the
mean structure of some “underlying generalized linear model”, provided
that the variance can be assumed proportional to the variance in that
model. If the observations are approximately normal (and probably also
if they are not) F—tests for model reductions and T-distribution—based
confidence intervals — which are only vaguely promoted by Nelder and
McCullagh — should in general be preferred to the approximations as-
suming A = \, when the number of degrees of freedom for the residual
is small. Just as for linear regression and analysis—of-variance mod-
els, validity of the model for the mean structure (linearity/additivity
assumptions and the link function) is the crucial condition for appli-
cability of the model. Correctness of the implied specification of the
variance as a function of the mean is also important, but the possible
damages caused by misspecification of the variance function are com-
parable to the damages caused by misspecification of the weights in a
linear regression (or by ignorance of heteroscedasticity in an ordinary
unweighted regression). Approximate normality of the responses is the
least critical condition. To this we can add, in the spirit of Wedder-
burn’s quasi likelihood approach, that an underlying generalized linear
model needs not exist at all, it suffices to know the mean function and
the variance function.

Most important of all: Don’t ever ignore overdispersion!

A practical remark. My public-domain statistical package ISU for DOS/
Windows has a procedure FITNONLINEAR for nonlinear regression
in the spirit of the present paper. ISU can be downloaded from my
homepage http://www.mes.cbs.dk/“sttt/.
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