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0. Introduction.

This paper describes an algorithm for construction of optimal or nearly
optimal block designs by repeated interchange of the treatments on pairs
of plots. Since the algorithm is very similar to algorithms presented by
Jones and Eccleston (1980) and Cook and Nachtsheim (1989), we shall
begin with a description of these algorithms, emphasizing the points
where our algorithm is different.

The algorithm of Jones and Eccleston (1980) has two phases. In phase
1, an initial (more or less arbitrary) design of the desired dimensions
is modified by a sequence of exchange procedures. An exchange pro-
cedure amounts to the replacement of the treatment on a plot with
another treatment. Thus, block sizes are fixed, while replicate counts
are changed. In each step, the choice of the next exchange to be per-
formed is roughly based on the idea that the efficiency factor should be
increased as much as possible. However, the change in efficiency due to
a given exchange is estimated rather than computed. This estimation is
based on the change due to removal or addition of single plots, which can
be computed from the information matrix for treatment parameters, ad-
justed for blocks, by relatively simple formulas. When this strategy gives
no further improvement, phase 2 is started. This phase is a sequence
of interchange procedures, i.e. operations interchanging the treatments
of two plots. Again, the intention seems to be to select interchanges
that induce maximal increase of the efficiency, and again the increase is
estimated from the consequences of simple delete/add operations.

The algorithm suggested by Cook and Nachtsheim (1989) is similar, but
their strategy for choice of next ex- or interchange is exact, in the sense
that they use exact formulas for the consequences of these operations for
their optimality criterion. The criterion considered is the determinant
of the information matrix, i.e. they consider D–optimality rather than
A–optimality. Their approach is not restricted to the case where the
treatment structure is the effect of a single factor, but allows for an
arbitrary design matrix determining the treatment structure.

Our algorithm can (though it was developed independently of Cook and
Nachtsheim) be described as a further development of the algorithm of
Jones and Eccleston, making use of computational ideas similar to those
used by Cook and Nachtsheim. Our optimality criterion is A–optimality,
amounting to maximization of the classical efficiency factor or minimiza-
tion of the average contrast variance. Our phase 1 differs from Jones and
Eccleston’s phase 1 by building up the design from scratch, adding ex-
perimental units one by one, rather than exchanging treatments in a full
design. Our phase 2 goes like that of Jones and Eccleston, except that
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the strategy is based on an exact formula for the decrease of average
contrast variance induced by an interchange procedure. Like Cook and
Nachtsheim, we work with the full information matrix for treatment and
block parameters, rather than the adjusted information matrix for treat-
ments only. This is essential for the availability of the computationally
very cheap updating formulas, which enable us to perform a complete
search through the entire set of possible interchanges within a reasonable
time.

An additional feature of our implementation of this algorithm, which
seems to have no counterpart in the implementations of the two other
algorithms, is a randomization device for escape from ‘local optima’.
Our approach here has a taste of simulated annealing (see e.g. Geman
and Geman 1984), but is really just based on the simple idea of searching
through a small random sample of possible switches and select the best.

A further advantage of our algorithm, which can not be ignored in prac-
tice even if it is theoretically irrelevant, is that our algorithm is available
as a self–explanatory program running on IBM PC’s and compatibles
under DOS. Please send an empty discette to the author, formatted the
way you want it.

1. The algorithm.

Phase 1. Our starting point can be viewed as a totally disconnected de-
sign consisting of B empty blocks of size k, none of the plots being used
for anything yet. Given are also the number T of possible treatments,
and the prescribed replicate count r. Thus, Bk = Tr is the number of
plots or experimental units that we intend to end up with in the final
design. Our implementation of the algorithm includes the possibility of
different replicate counts and/or different block sizes, but for simplicity
of notation, this trivial extension is ignored in the following. Now, plots
are assigned treatments one by one, according to the following princi-
ples. As long as the design is disconnected, each new block–treatment
combination should be such that the number of connected components
of the design network is reduced by one (see Tjur 1987; our ‘empty’ ini-
tial design corresponds to an entirely disconnected network, consisting
of B block points and T treatment points, with no connections at all).
This strategy ensures that the design will be connected after the intro-
duction of B + T − 1 plots. Apart from this restriction, and some less
important attempts to keep the connected compononts equally sized,
the assignments during these first B + T − 1 steps of phase 1 are per-
formed at random, under the ties given by the design constants. Once
connectedness is obtained, it makes sense to talk about the contrast
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variances (i.e. the variances on differences between estimated treatment
parameters in the intra–block analysis), and from then on the strategy
is to select in each step that treatment–block combination which gives
maximal decrease of the average of the

(
T
2

)
contrast variances.

Designs obtained in this way are usually good, but rarely optimal. It can
be added that for large designs this construction may take a long time on
the computer. Our implementation includes, as an optional choice, the
possibility of entering a design directly as the starting point for phase
2. J. A. John (personal communication) has reported good results with
the best cyclic design as a starting point for phase 2, see John (XXX).

Phase 2. In order to improve the design, we proceed as follows. Let a
switch be an operation that interchanges the treatments t1 and t2 as-
signed to plots on the blocks b1 and b2. This is what Jones and Eccleston
called an interchange procedure, but we prefer the term ‘switch’ due to
the analogy with electrical networks that initiated our work on this al-
gorithm, see Tjur (1987). Among all possible switches we select, in each
step, one according to the following criteria. Switches that would make
the design disconnected are not taken into account. Also, switches that
would make the design ‘less orthogonal’ than it was before are ignored;
by this we mean that only switches satisfying

nb1t1 > nb2t1 and nb2t2 > nb1t2

are taken into account (nbt denoting the number of plots of block b with
treatment t). Among the switches allowed, we select the one that gives
maximal decrease of the average contrast variance.

Phase 2 continues like this until a design is reached for which no switch
will decrease the average contrast variance. Such designs are called
locally optimal, because they are better than all their ‘switch neighbours’.
Of course, local optimality does not guarantee (global) optimality. The
choice of a reasonable starting point (e.g. the result of phase 1) may
be critical here. For small design constants, the algorithm consisting of
phase 1 and phase 2 turns out to work well. For larger designs, phase
2 is more frequently ‘trapped’ by locally optimal designs. This problem
can, to some extend, be handled by the addition of a third phase.

Phase 3. We proceed as in phase 2, but in each step the search is re-
stricted to a random sample of given (user–defined) size, drawn (with re-
placement, for simplicity) from the set of possible switches. In this phase,
switches increasing the average contrast variance are allowed (otherwise
we would not be able to start). Having ‘shuffled the cards’ for a while
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in this way, we initiate a new phase 2 search, etc. etc. In our present im-
plementation, phase 2 is reentered when the number of random switches
performed exceeds a (user–defined) bound, and also whenever a design
better than all previous designs is found.

2. Test runs.

Example 1 (a sample of BIBDs). For given T and k < T , let B be the
smallest integer such that both r = kB/T and λ = k(k−1)B/(T (T−1))
are integer. The algorithm was applied to the 51 sets of design constants
(B, T, k, r) of this form satisfying 3 ≤ T ≤ 12 and B ≤ 56. In all cases,
a balanced incomplete block design is known to exist, and it is known
(Kiefer 1958) that BIBDs are optimal when they exist. A BIBD was
found as the result of phase 2 in 40 out of the 51 cases. The number
of switches required by step 2 was less than 12 in these cases. In 10 of
the remaining 11 cases, a BIBD was found by randomized search in less
than 40 switches.

Example 2 (a sample mainly consisting of regular graph designs). John
and Mitchell (1977) listed 145 triples (T, k, r) for which the optimal
design was found by systematic search among all possible designs. In
all but 9 of these cases, a design with the same efficiency as the optimal
design (reported with 3 significant digits by John and Mitchell) was
found by phase 2. In the remaining 9 cases, designs with at least that
efficieny minus 0.001 was found. The number of switches performed was
less than 8 in all cases.

Example 3. (simple lattices for k = 3, 4, 5, 6 and 7). The algorithm
was applied to design constants of the form B = 2k, T = k2, r = 2, for
k = 3, 4, 5, 6 and 7. A simple lattice was found in phase 2 after 1, 3, 2,
5 and 6 switches, respectively.

Our experiences confirm the conjecture by John and Mitchell (and sev-
eral other authors) that any optimal design (among equi–replicate de-
signs) must be a regular graph design if such exist. Indeed, the switches
chosen in phase 2 tend to shrink the distribution of the concurrence
counts whenever possible. Only 10 of the 145 designs found in the test
run described by example 2 were not regular graph designs, and some of
these are of dimensions for which a regular graph design does not exist.

5



3. Computations.

The statistical model considered can be written on the form

yi = αt + βb + σui,

where the ui are i.i.d. normal (0,1). Or, in matrix notation,

y = XTα+XBβ + σu.

The information matrix (for the full parameter set, B + T parameters)
is then

C =

(
X∗

TXT X∗
TXB

X∗
BXT X∗

BXB

)
.

Let
var(α̂t′ − α̂t′′) = σ2R(t′, t′′)

and
var(α̂t + β̂b) = σ2R(t, b)

be the expressions for contrast variances and variances on fitted values,
respectively. Let C− be a reflexive generalized inverse of C (cfr. Rao
1973). Then, with an obvious notation for column vectors of length
B + T which are 1 at single entry and 0 otherwise, we have

R(t′, t′′) = (1t′ − 1t′′)
∗C−(1t′ − 1t′′)

and
R(t, b) = (1t + 1b)

∗C−(1t + 1b).

Let R̄ denote the average of the
(
T
2

)
quantities R(t′, t′′) (the normalized

average contrast variance), and let M be the matrix that comes out by
averaging over (t′, t′′) of the matrices

C−(1t′ − 1t′′)(1t′ − 1t′′)
∗C−.

Then, we have the following ‘updating formulas’, relevant for phase 1
and 2 respectively.

If the design is extended by a plot in block b with treatment t, then the
change in average contrast variance is given by

R̄new = R̄old − (1b + 1t)
∗
M (1b + 1t)

1 +Rold(b, t)
.
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If the design is changed by a switch, interchanging treatments t1 and
t2 on blocks b1 and b2 respectively, then the change in average contrast
variance is given by

R̄new = R̄old

+
(δ∗tC

−δt)(δ
∗
bMδb) + (δ∗bC

−δb)(δ
∗
tMδt) + 2(1− δ∗bC

−δt)(δ
∗
tMδb)

(1− δ∗bC
−δt)2 − (δ∗tC

−δt)(δ∗bC
−δb)

where
δt = 1t1 − 1t2 , δb = 1b1 − 1b2 .

We shall not give the proof of these formulas here (see Tjur 1987). The
basic idea, noticed also by Cook and Nachtsheim (1989), is that the
addition of a plot to the design corresponds to the addition of a rank 1
matrix to C, while a switch corresponds to the addition of a matrix of
rank 2. There are wellknown formulas for updating a generalized inverse
under such transformations. The complexity of the ‘switch formula’ is
due to the fact that this updating involves the explicit inversion of a 2×2–
matrix. Notice, however, that once the (B + T ) × (B + T ) symmetric
matrices C− and M are computed and stored, the consequence of a
modification of the design is given by an expression which does not even
involve summations over ranges depending on the design constants. The
‘matrix products’ occurring in the formulas are really just sums and
differences of a few elements from the matrices C− and M.
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