Tue Tjur

Coefficients of determination in logistic
regression models — a new proposal:
The coefficient of discrimination.

Summary.

Many analogues to the coefficient of determination R? in ordinary regression models
have been proposed in the context of logistic regression. Our starting point is a
study of three definitions related to quadratic measures of variation. We discuss the
properties of these statistics, and show that the family can be extended in a natural
way by a fourth statistic with an even simpler interpretation, namely the difference
between the averages of fitted values for successes and failures, respectively. We
propose the name “the coefficient of discrimination” for this statistic, and recommend
its use as a standard measure of explanatory power. In its intuitive interpretation,
this quantity has no immediate relation to the classical versions of RZ, but it turns
out to be related to these by two exact relations, which imply that all these statistics

are asymptotically equivalent.

0. Introduction.

Consider an ordinary linear regression model, describing the observa-
tions ¥1,...,y, as independent normal with common variance o2 and
expectations

Eyi = pi = o+ fa; + ...

” is meant to indicate

where, here and in the following, “a + Bx; + ...
any linear model specification. Let fi; = & + Bx; + ... denote the fitted

values, and consider the following sums of squares of deviations,
SSDyes = > (y; — f1;)? (the residual square sum)

SSDimod = Y. (f1;i — 7)? (the model square sum)

SSDiot = > (y; — 7)? (the total square sum)

Provided that the model has a constant term (like v above), the average
y of the observations equals the average fi of the fitted values, which
means that SSDy,0q can also be interpreted as the unnormalized empir-
ical variance of the fitted values. The presence of a constant term will

be assumed throughout the paper. For models without a constant term



it does not make much sense to talk about explanatory power in the R?
sense, because the whole idea is to compare the model with the trivial
model that has only the constant term.

Due to this assumption and the orthogonality of the residual vector and
the vector of fitted values, we have the formula

SSDtOt = SSDmod + SSDreS

which can be interpreted as a decomposition of the total “variation”
of the observations in two components, the variation explained by the
model and the residual variation. Accordingly, the coefficient of deter-
mination

SSD SSD
2 mod res
R? = ——1°C 1

SSD; ot SSDi ot

is interpreted as the fraction (or percentage, if multiplied by 100) of the
total variation which is explained by the model.

Before we proceed with the generalization to logistic regression models,
it is important to understand what this quantity really is. Though func-
tionally related to the F—statistic for the overall test for “no effects at
all”, it should certainly not be regarded as a test statistic, since it is
usually computed after reduction of the model by removal of insignifi-
cant terms. In statistical practice, it is just an exploratory statistic that
we compute, and then we clap our hands if it is close to 1. The question
is why we clap our hands. It is certainly not because a model with a
low value of R? is necessarily a bad model. We can have a perfectly
respectable model with a low R2, if the design of the experiment is such
that the values of the explanatory variables are kept in a (too) narrow
domain.

The best interpretation of R? is probably as an estimate of a parameter
function. For large values of n and under suitable asymptotic conditions,
implying that the fitted values ji; are close to the true expectations u;,
we have approximately

1
—SSDmod & — i — )2
nSS a4 E (i — In)

and . .
_SSDresz_ 7 712z 2-
" " Y (i —mi)~o

It follows that

0.2

(i — )+ 0%
In the last fraction, the denominator can be interpreted as the variance
of a randomly chosen observation y;. Thus, 1 — R? can be regarded as

R2~1-—
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an estimate of the proportion between two error variances, namely the
variance when we predict observations by their expectations p; under
the model, and the variance when we predict them by their common
expectation i as randomly chosen observations among the n we have.
In this sense, R? measures the model’s ability to predict, relatively to
the trivial model which assumes that the observations are i.i.d.

From this it should be clear that the interpretation of R? is easier when
the set of experimental units can be regarded as a random sample from
some population, perhaps even related to a multivariate normal distri-
bution of the covariates. For designed experiments, R? is less relevant
— or at least its interpretation is entirely different — because it depends
so strongly on the design.

A final remark about the interpretation is that R? (as indicated by
its name) equals the square of the empirical correlation between fitted
values and observations,

Rzz< Sy = D)~ 9) )
VWi PG )

1. Three definitions of the coefficient of determination in a
logistic regression model.

Prediction in a logistic regression model can mean two different things,
prediction of a single binary outcome and prediction of a relative fre-
quency of successes in a covariate group (i.e. a group of observations
with the same pattern of covariate values). The criticism of R? as a
measure of explanatory power in logistic regression models put forward
by Cox and Wermuth (1992) is obviously related to the last interpre-
tation. Here, we are only interested in the first. For this reason, we
consider only models for proper binary data, without aggregation to bi-
nomial counts. In this framework, a good prediction of an observation
is only possible when the success probability is close to 1 or 0.

The justification of this choice is that it is in accordance with the usual
interpretation of R? for linear models, which is related to the model’s
ability to predict a single observation. In linear models for normal ob-
servations, the equivalent of forming relative frequencies for covariate
groups would be the replacement of the original observations with av-
erages over covariate groups. This is a wellknown way of improving the
accuracy and reducing the data set, but it is usually not considered a
legitimite way of increasing R2.

Let y; € {0,1} (1 for “success”, 0 for “failure”) denote the binary, inde-
pendent responses. The model is given by

~expla+ Bz +...)
1+expla+ Bz, +...)"

Ply;=1)=Ey; = m
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Let 7; denote the ML—estimates of the success probabilities, or the fitted
values. An important remark here is that the average 7 of the fitted
values is equal to the average y of the binary responses, the relative
frequency of successes in the data set. This identity is just one of the
likelihood equations, namely the equation one gets by differentiation of
the log likelihood with respect to the intercept «. This is an exclusive
property of the logit models, shared by other exponential family classes
like the linear normal models and the log—linear Poisson models, but not
by models for binary data specified by other link functions than logit.

As in the linear case, we define

SSDreS - Z(yz - 7%7,)2

SS[)mod — z(ﬁ'z - g)z

SSDiot = Y (i — ?3)2

A property of the normal linear models which is not shared by the logistic
regression models is the orthogonality of the vector of fitted values and
the vector of residuals. Accordingly, SSDyyt is not the sum of SSDy,0q

and SSD,es, which leaves us with two obvious candidates for the title
R2,

SSD mod
R2 — mo
mod SSDtot
and 38D
R =1— o
res SSDtot

Moreover, the interpretation of the classical R? as the squared empirical
correlation between observations and fitted values suggests the definition

Rzz( S (i — D~ 9) )
T\ VI - 9 S0

These definitions are among those studied by Kvalseth (1985), and they
are also mentioned in the review article by Menard (2000), as alternative
expressions for essentially the same quantity. As we shall see later, there
is a complicated exact relation between these three quantities. But let
us first study their properties.

An important observation is that they are approximately equal, as esti-
mates of one and the same parameter function, in the following sense.
Assume that the probability estimates 7; are close to the true proba-
bilites m;, and that the sums over ¢ = 1,...,n occurring in the following
can, with little relative error, be replaced with the corresponding sums
of expectations. The approximate results derived under these conditions
can obviously be translated to proper asymptotic results, at least under
the restrictive condition that the observations belong to finitely many
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covariate groups that grow proportionally as n — oco. In this case we
know that the maximum likelihood estimates of the parameters will con-
verge to the true parameter values, and the replacements we are going
to perform of certain sums by the corresponding sums of expectations
are asymptotically valid by the law of large numbers.

Under these assumptions we have

SSDimoa ~ Y _(mi — 7)?,

SSDyes ~ Z(yz - ﬂ-i)2 ~ Zﬂ-i(l o Wi)

SSDwot = » (4 —9)> =D i — % (Z y">2

=ng —ny® =ny(l —y) ~n7(l — 7).

and

The following computations show that these asymptotic expressions for
the basic square sums do actually satisfy the relation corresponding to
the exact orthogonality relation in the linear case,

SSI)mod + SSDres ~ Z(ﬂ'z - 7?)2 + Zﬂ'l(l — 7T7;)

=Y (m+m-2mr+m—n)) =) (7 -2m7+m)
=nr? - 2n7% + 7 = nw(l — 7) = SSDyes .

It follows that
R (i —m)? . Yo mi(l—m;) ~ R?

mod = Cyr(1—n) 0 nx(l—n) res -
Hence, R2 , and R2, can be regarded as estimates of the same param-
eter function.

For the third statistic R?

cor?

R _ (s = 9) (i —9)° _ (C(ys — i + 7 — 9) (7 — 9)°

NP m - X - 9)? (R - g)?

— (Z(yz - ﬁl)(ﬁl — g) + Z(ﬁ'z B g)2)2
S (i — 9)2 (7 — )2

(0+ (7 — 5)?)° SSD2,4  _ SSDumod _ p»

S (i — 9)2 5 (7i — 7)2  SSDotSSDmod  SSDpoy e

This means that R, and R?nod are asymptotically equivalent, and in
particular that R2  can be regarded as an estimate of the same param-

eter function as the two others.

we have
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Simulation studies with the m;’s spread more or less uniformly over the
unit interval show that the properties of these three statistics are very
similar. They have almost the same mean and the same standard devia-
tion. As estimates, they are upwards biased. The bias is small compared
to the standard deviation when the number of covariates is small, but
increases with the number of parameters. However, what is most impor-
tant to us here is that the pairwise differences between them are small,
with a standard deviation of no more than around 20% of their individ-
ual standard deviations. This holds rather generally, for situations with
n = 100-10,000 and 2-50 covariates. In particular, R2, and R2 are

typically very close to each other. As we shall see later, there is a good
reason for this.

Thus, from a practical point of view it does not matter much whether
we choose R2,, R . or R?  as our measure of explanatory power. We
can freely choose the one with the simplest interpretation as a function
of data and fitted values. Personally I would prefer R2 . if I had to
choose, because this is the maximum likelihood estimate of the param-

eter function it estimates.

But obviously, we must also take a look at the theoretical properties of
these quantities. The least we can expect from a reasonable coefficient
of determination is that it takes its values between 0 and 1, and that the
extreme values 0 and 1 correspond to the properties “no explanatory
power at all” (all fitted values are equal) and “perfect fit” (the fitted
values coincide with the observations).

The last property requires an explanation. Formally, finite values of
the parameters «, (3, ... can never result in the exact values 1 or 0
of the success probabilities. What we mean when we say “perfect fit”
or “y; = m; for all ¢” is, of course, that the likelihood function takes
its maximal value on the boundary — or more correctly, it does not
take a maximal value at all, but converges to a value greater than all
others when the parameter vector tends to infinity in a certain direction.
More precisely, the condition is that there exists a linear combination
a + bx; + ... of the covariates which separates successes and failures,
in the sense that it is positive for y; = 1 and negative for y; = 0. In
that case, taking ay = Na, By = Nb etc., will produce a sequence
of parameter values such that the likelihood converges to its supremum
as N — oo and the condition y; = @; for perfect fit is met in the
limit. This is what we mean when we write y; = 7;. We are really
talking about the degenerate situation which, in practice, is recognized
by the following characteristics. The Newton-Raphson iterations tend
to continue forever unless they are stopped by some “time out” limit.
All or some of the parameter estimates obtained in the last iteration are
unrealistically large in absolute value (typically corresponding to values
of & + Bazz + ... around 440, which is roughly the same as oo on the
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logit scale), and so are their reported approximate standard deviations
(which, in turn, implies that the Wald tests for removal of terms from the
model are useless). The model has failed in the sense that it degenerates
to a deterministic model. But if we compute the fitted values, they
turn out to coincide exactly (in principle only almost exactly) with the
observations.

Notice that if all 7; are 0 or 1, then we must also have y; = 7;. Or,
to be more precise, if a sequence (a¥), 3(N) ) of parameter vectors
can be constructed in such a way that the corresponding values of the
likelihood function converge to its supremum, and all the corresponding
sequences of success—probabilities 7ri(N) converge to either 0 or 1, then we
can not have the limit 1 for an observation which is 0 or vice versa. This
is easily seen if we take a closer look at the expression for the likelihood
and notice that it will always converge to zero when at least one ;
converges to 1 — y;. Hence it makes good sense to state the condition

for “perfect fit” simply as “y; = 7; for all 7”.

The following result shows that our proposed measures of explanatory
power have — with a single exception — the properties one would expect
by analogy with the properties of R? for linear models.

Proposition 1.

R2 4 and R?,, are > 0, with equality if and only if all #; are equal.

cor

2 2 2
Rm0d7 Rres and Rcor

2.

are < 1, with equality if and only if y; = 7; for all

The proof can be found in section 5.

Notice that the proposition does not claim that RZ_ > 0. It is actually
possible to construct examples where R2 _ is negative. Take a model with
a single covariate x with values 1 =2, zo =1 and z3 =--- =z, = 0,
and suppose we have observed y; = 1, y2 =0 and y3 =+ =y, = 1.
For n > 13, R2,, becomes negative, and for large n it seems to approach
—0.25. T have no idea whether —0.25 is a lower limit for this phenomena.
But the fact that RZ_ can come out negative — even though it seems
to happen only in such degenerate cases — is more than enough to
disqualify it as a candidate for the title “best choice of R? in logistic

regression”.

2. A fourth definition, the coefficient of discrimination.

Among the many exploratory methods for evaluation of a logistic re-
gression model, my favourite is the following. Draw two “parallel his-
tograms”, i.e. two histograms, one over the other, on the same scale (in
this case the unit interval) and with the same number of intervals (in
this case usually 10, for very large n perhaps 20). The distributions
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summarized by the two histograms are, respectively, the distribution of
the fitted values for the failures and the distribution of the fitted values
for the successes. See figure 1 in section 3 for a concrete example. This
simple figure contains a lot of information. For example, an easy way
of detecting serious violations of the model assumptions (in particular
misspecification of the link function or the need for transformation of
covariates) is to check for inconsistencies between the heights of corre-
sponding bars in the two histograms. If the model is correct we would,
for example, expect the proportion between the counts of successes and
failures with fitted values between 0.3 and 0.4 to be somewhere around
0.35/0.65, because each of the observations in play here is supposed
to be a success with a probability between 0.3 and 0.4. This graph-
ical check of the model can be regarded as an explorative version of
Hosmer—Lemeshow’s test (Hosmer et al. 2000), which — in spite of
the criticism put forward by Hosmer et al. (1997) — is about the clos-
est one can come in the strictly binary case to a standard analogue of
the usual goodness—of-fit test for data that are aggregated to binomial
counts in relatively large covariate groups. The ROC—curve (see again
e.g. Hosmer et al. 2000) is also related to this figure, namely as the
curve (1 — Fy(w),1 — Fy(m)), m € (0,1), where Fy and F; are the cdf’s
of the empirical distributions underlying the two histograms. But in
my opinion, the two histograms are much easier to interpret than the
ROC-curve.

Also, the commonly reported two-by-two contingency tables of “pre-
dicted versus observed” are closely related to the two histograms. The
idea behind these tables is that a good model is a model that predicts
well, in the sense that almost all observations with fitted values higher
than, say, 0.5 are successes, whereas almost all observations with fitted
values lower than 0.5 are failures. In other words, a good model is char-
acterized by the property that if we “predict” each observation by 1 or
0 according to whether its estimated probability of success is greater
or smaller than a given threshold value, then we get a high percentage
of “hits”, with only a few “false positives” and “false negatives”. The
two histograms summarize in the simplest possible way a number of
such tables, one for each cutpoint, and actually does it in a much more
convenient way than a listing of the tables would do. For example, by
looking at the histograms it is usually easy to get an impression of where
one should place the threshold in order to minimize the total number of
false predictions, if this is what we want.

Now, let us for a moment forget all about the R2-statistics of the previ-
ous section. They were based on ideas related to variance and quadratic
variation, which — as also noticed by Menard (2000) — are somewhat
strange concepts in a universe of binary observations. And let us, in-
stead, take the above mentioned characterization of “a good model” as
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our definition of a high explanatory power. In order to boil this vague
concept down to a single quantity, we must invent a statistic that mea-
sures the degree to which the upper histogram has most of its mass
concentrated close to the left endpoint of the unit interval and the lower
histogram has most of its mass concentrated close to the right endpoint.
A simple, almost canonical, choice here is the difference between the
expectations in the two distributions, i.e.

D:’ﬁ-l_’ﬁ-(]a

where 71 and 7y denote the averages of fitted values for successes and
failures, respectively. As a name for this quantity I propose the coeffi-
cient of discrimination. This name was used by Raveh (1986) for a very
similar quantity (though in a somewhat different context), and it seems
to describe very well what the quantity actually measures, namely the
model’s ability to discriminate between successes and failures.

Conceptually, D has not much in common with the R? measures dis-
cussed in the previous section. But as a matter of fact, we have the
following result.

Proposition 2.

We have the exact relations

D= - (Ry,q+ R}

mod res)

[N

and
D =./R?2 .R2

mod~— “cor

In words, D equals the arithmetic average of R2 4, and RZ% and the
geometric average of R2 , and R .

The proof is given in section 5.

An immediate consequence of this is that D is asymptotically equiva-
lent to the R? measures of section 1. Moreover, combining the second
relation of proposition 2 with the properties of RZ , and RZ  stated in
proposition 1, we get the following nice result.

Corollary.

D > 0, with equality if and only if all 7; are equal.

D <1, with equality iof and only if y; = 7; for all i.

Another consequence of proposition 2 is the following technicality. Im-

plicitely, the proposition implies a relation between the three quantities

2 2 2 : :
RZ 4s Ries and RZ ., which can be rewritten as

1 [ R? R?
1 - res 1 — 1 cor 1 .
5w \/ (1)
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Now, consider an asymptotic situation where all the R? versions are
close to each other. Think of the right hand side of the above identity as
2

the value of the function /1 + (2 — 1) evaluated at the point z = }I;C“ ,

mod
which is pretty close to 1. If we replace this function by its first order
Taylor expansion around 1, we get the appoximate identity

1 [ R? 1 ( R?
1 - res _ 1 ~ 1 - cor 1
3 (w1 =ea ()

mod mod

which is valid up to an error term that is known to be small of sec-

ond order in ( 523“ — 1). Thus, the absolute value of the difference

mod
between left and right side in this approximate relation is dominated

2 2
by something of the form const. x ( ;}“ —1) . A few further rear-

mod
rangements of terms, which we leave to the reader, will show that the

difference R2,, — R2, is of the same order of magnitude as the square
of R2 — R2 . This explains why RZ_ and R2, are (in our simulation

studies, and in practice when data sets are large enough) so much closer
to each other than to R2

mod*

3. An example.
Histogram for FIT by SUCCESS

Low=0

Low=1

SUCCESS

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
FIT

Figure 1.

As a data set for illustration I have chosen the Baystate Medical Center
data on low birth weights which has been used for the same purpose by
Hosmer et al. (2000, page 25 and 26), and also by Hosmer et al. (1997)
and Zheng and Agresti (2000). It contains information about 189 births,
with the response LOW (indicator of low birth weight) as the binary re-
sponse, to be explained by various demographic and clinical variables.
For further compatibility, the model considered here is identical to the
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one considered by Hosmer et al. (1997), which includes most of the
variables that are really significant plus the mother’s age (which is in-
significant, but known from other studies to be important). In standard
model formula syntax, our model is

LOW = CONST. + AGE + LWT + RACE + SMOKE

where AGE is the mother’s age, LWT is her weight before pregnancy, RACE
is ethnicity coded as a factor on three levels and SMOKE is an indicator
of (the mother being) a smoker.

The two parallel histograms of fitted values for failures and succeses
are shown in figure 1. The proportions between bar heights in the two
histograms seem to behave roughly as they should. For example, the
two bars over the interval from 0.2 to 0.3 represent 19 “failures” and 10
“successes”, which does not deviate significantly from what one would
expect for 29 binary outcomes with success probabilities between 0.2
and 0.3. But as we can see, there is not much explanatory power in
this model. The two histograms have a considerable overlap. The most
positive we can say is that it is possible to isolate a small low—risk group,
consisting of the women with # < 0.2. This group consists of 50 women,
of which only 4 gave birth to a child with critically low weight. A
similar high-risk group of substantial size can not be identified (only
one fitted value exceeds 0.7) Thus, even if the conclusions of this study
may be scientifically interesting, they are not likely to be of much help
in clinical practice. Accordingly, the summary measures of explanatory
power are small,

R? R? R?

mod res cor D

0.101766 0.090697 0.090998 0.096231 °

4. Conclusion.

It is impossible to hide any longer that I consider the quantity D, the
coefficient of discrimination, a highly recommendable R2-substitute for
logistic regression models. The corollary shows that D shares impor-
tant properties with some of the more classical R? statistics discussed in
section 1. According to proposition 2, we may even think of D as a com-
promise between the two quadratic measures anod and R? . that were

cor
left after the disqualification of RZ_ (see remark following proposition
1). This relation to the classical R? versions is an obvious advantage if
we want to assign a similar meaning to concrete values of D as to the
same values of R? in ordinary linear regression models. In addition to
this comes that D can be explained in terms and concepts that are di-
rectly related to models for binary observations on their own premisses,
without any reference to strange concepts like prediction variance and

quadratic variation. D is probably the measure of explanatory power
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that comes closest to the satisfaction of the eight ideal requirements set
up by Kvalseth (1985).

A small reservation is required here. Neither D, nor any of the three R?
versions discussed in section 1, have the property that they will automat-
ically increase when the model is extended by an additional covariate.
Usually they will, of course. A few (not too systematic) simulation stud-
ies for selected examples indicate that this happens in more than 99.9 of
the cases, even when the added covariate has no effect at all. But since
maximum likelihood in logistic regression is not equivalent to minimiza-
tion of the residual sum of squares, nor maximization of the model sum
of squares or the difference 71 — 7g, it is no surprise that these statistics
can “move the wrong way” when a model is extended or reduced. If this
property is considered overwhelmingly important (as it seems to be e.g.
for Cameron and Windmeijer 1997), a likelihood—based R?-substitute
should probably be preferred. Many such proposals have been made in
the literature, but if we restrict our attention to proper generalizations
of the usual R? from linear models, the one and only choice seems to be
the statistic proposed by Cox and Snell (1989),

2 . .
1 —exp <—5(l—lo)> ;

where [ and [, are the maxima of the log likelihood for the model in
question and the model with only a constant term, respectively. The
justification of this is that this is exactly the formula that expresses the
usual R? for normal linear models in terms of the log-likelihood. Thus,
it is not unreasonable at all to expect a nice behaviour of this canonical
generalization of R?. But unfortunately, it turns out that it never takes
values close to 1. Its maximal value 1 — exp(2lo/n), which is taken when
y; = 7; for all 7, never exceeds 0.75. As noticed by Nagelkerke (1991),
this can be repaired by a simple renormalization; but after this, the idea
has certainly lost a bit of its intuitive appeal.

5. Proofs

Proof of proposition 1.

It is obvious that R2 . > 0, with equality if and only if all #; are equal,

mod
and that RZ_ < 1 with equality if and only if y; = #; for alli. B2 _, <1

is equivalent to mod —
Swi-9)? <Y (vi — )
SoaZong? <Yy - g
o<y vl
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or (since D y7 = Y yi = > i)
DI

D w1 =) >0

which is trivially correct with equality if and only if all ; are either 1 or
0. The inequalities 0 < RZ . < 1 are immediate consequences of the fact
that R2, is a squared correlation coefficient. From another wellknown
property of the correlation coefficient, we conclude that we have R2 . =1
if and only if there is a linear relation of the form 7; = a + by;, and this
is easily seen to imply the precise condition for perfect fit, or 71; = y; for

all 7.

or

It remains to prove that R2,, = 0 if and only if all the #; are equal. This

is a trivial consequence of the following result, which we give the form
of a lemma for later use.

Lemma 1. We have the inequality

with equality if and only iof 7; =y for all 7.

Proof. We have

Z(?Ji —y)(7i—y) = Zyz(ﬁ'z —y) = Zyﬁn - Zyz?j

In order to make an indirect proof, assume that this quantity is strictly

negative, or that
>y <Y il

Under this assumption we can show that the value of the log likelihood
with the fitted values 7; inserted becomes smaller than the value it takes
when all #; are replaced with their average #. Since this is in contra-
diction with the fact that the values ; maximize the log-likelihood, the
assumption must be wrong. The detailed argument goes as follows.

By a straightforward computation, our assumption implies that we also
have the “complementary” inequality

Y (M=) =) <> (1—y)(1-7),

and these two inequalities can conveniently be written on the short form

N
=N

1<g< 0>
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where 71 and 7 denote the averages of the fitted values among successes
and failures, respectively.

Now, by Jensen’s inequality and the concavity of the log curve,

> yilog i < (3 i) log#y

and

S (1 i) log(1 — 7)< (3-(1 =y ) log(1 - 7o)

Since log is strictly increasing, we have further

(Z yz> log 7ty < (Z y1> log 7t

and
(Dot — ) log(1 — 7o) < (D21~ ) log(1 — 7).

Combining the two chains of inequalities and adding them, we get

> yilogi+ Y (1—yi)log(1—7;) <> yilogz+ > (1—y;)log(1—7)

which expresses that the log likelihood can be strictly increased by re-
placement of the maximum likelihood estimates with parameter values
for which only the intercept parameter is nonzero. Thus we have reached
a contradiction, and we must conclude that the inequality of the propo-
sition is always satisfied.

It is obvious that if all #; are equal (and thereby equal to # = %), then
the inequality of the lemma becomes an equality. Conversely, suppose
that this inequality degenerates to an equality. In order to prove that
m; = ¥ for all 72, we can reuse the arguments of the first part of the proof
in a weakened form, where the assumption 7; < § < ¢ is replaced with
71 < gy < 7rp. Just like in the first part of the proof, we can show that

Z?Jz’ log7r; < (Z yz> log 71 < (Z yi> log 7 .

The first inequality here follows from Jensen’s inequality and the con-
cavity of the log curve, the second from the fact that the log curve is
increasing. The only difference is that none of the inequalities are sharp
here. In the same way, we can derive the “complementary” inequalities,
where y; is replaced with 1 — y; and 7; with 1 — 7;. Adding these two
chains we end up with the same old inequality between the two values of
the log—likelihood, the only difference being that this time it is not sharp.
Now, the important observation is that if as much as a single one of the
four inequalites in the two chains is sharp, then the relation between the
two values of the log—likelihood becomes sharp too. And since this is not
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possible, we must have equality all the way through the two chains. If
the inequality following from Jensen’s inequality is an equality, we must
(since log is strictly concave) have that all the 7; for successes are equal.
Similarly, the similar equality in the complementary chain means that
all the 7; for the failures are equal. And if the inequalities based on
monotonicity of the log—curve are equalities, we must have 7, = 7 and
7o = 7, since log is strictly increasing. Obviously, the only possibility
left is that all 7; are equal.

Proof of proposition 2.
Define
SPD = “(y; — #;) (7 — 7) -

Then,
SSDtOt - SSDreS —|- SSDmod —|— 2SPD

and from lemma 1 it follows that

SPD + SSDmoa = 3 (4 — §) (7 — §) > 0.

How sS sS
1 1 Dmod Dres
3 (Fmoa + Fires) = 3 ( SSDeor SSDtot>
SSDymod -+ SSDiot — SSDres
- 2SSDior
SSDinod + SSDyes + SSDymod + 2SPD — SSDes
B 2SSDio:
2SSDmoa + 2SPD SSDiea +SPD > (yi — 9) (71 — )
- 2SSD;o; ~ SSDw: SSDio:

— Z(yz - g)(ﬁ-z - ?j) /SSDmod _ /Rz R2 )
\/SSDtotSSDmod SSDtot cor™ mod
Thus, the two right hand sides in the proposition are equal. It remains
to prove one of the two identities. The last one can be proved as follows.

p o 2yt 21—y
> Yi > (1 —wi)
Qo yimi) Q_(1 =) — (1 —yi)mi) O wi)
(i) 21 —wi))
_on oyt — Qo) Qo wids) — Qo wi) Qo) + Qo wi) Qo i)
Qwi) Qo1 —wi)
- ny (yi—y) (7 —y)  SPD+SSDmoa  SPD + SSDpoq

Xy)(n=Xv)  Yy2-LCw)?® SSDtot

which, according to the previous computations, equals /R2 R2 ..
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