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Sequential Measurement Schemes, prequential inference
and the Dickey–Fuller Test.

Summary. A classical “paradox” in statistical inference concerns a sit-
uation where a measurement is performed by an instrument selected at
random among two with different error variances. Orthodox Neyman–
Pearson theory fails in this case, and the example is a standard argument
for conditioning on an ancillary statistic whenever this is possible.

More complex sequential versions of this scenario are discussed. Mea-
surements are made according to schemes where the precision of each
measurement depends (in a known or unknown way) of earlier measure-
ments. It is argued that such situations should be handled according to
the prequential principle (Dawid 1984), i.e. by ignorance of their sequen-
tial nature. Our arguments are based on (imagined but) very concrete
scenarios, where ignorance of the prequential principle would force us to
behave in absurd ways.

The most general of these scenarios turns out to contain a simplified
version of a wellknown problem in econometrics, namely that of testing
for an autoregression coefficient equal to 1 in an AR(1) process with
known error variance and expectation 0. This results in an extremely
simple solution to this problem.

However, recommendations based on the prequential principle must nec-
essarily be given with some reservation, because this principle — when
followed strictly — results in other “paradoxes”. This is discussed in
section 4.
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0. Introduction.

The purpose of this article is to indicate how some of the wellknown
foundational problems in statistics, namely some of the “paradoxes”
associated with sequential sampling plans, have a very simple and di-
rect relation to a class of problems in econometrics (key words AR(1),
Dickey–Fuller test, cointegration). This relation suggests that it may
be possible and perhaps even desirable to replace some of the methods
developed in the context of cointegration by simpler, classical methods.

The ideas discussed are closely related to prequential inference as in-
troduced by Dawid (1984). If there is any difference at all between
the principle promoted in the present article and Dawid’s prequential
principle, it has to do with generality. We focus strictly on situations
where inference about a parameter in a well–defined statistical model
is the issue. A secondary purpose of this work is to contribute to the
clarification of some of the concepts related to prequential inference.

It would be an exaggeration to say that a unified conclusion or set of
recommendations can be deduced from this. Apart from my personal
opinions, the only conclusion coming out of all this is that we have a
foundational problem here. But in a wider perspective, I hope that this
way of making foundational problems visible, not only in imagined and
more or less theoretical situations, but also in statistical practice, will
contribute in a constructive way to the necessary clarification.

We begin by recalling some of the foundational problems in statistical
inference. The following is a slightly modified version of an example due
to Cox (1958).

Scenario no. 1

A normal measurement of an unknown quantity µ is performed with one
of two instruments, a very inaccurate instrument with error variance 1,
and a very accurate one with error variance 1/1000. The instrument to
be used is selected at random by a coin–toss.

This example has become widely known because it illustrates so very
clearly how orthodox Neyman–Pearson theory breaks down when it is
used blindly. It would be an exaggeration to call this a paradox, since
there is essentially no disagreement today about how to handle a situ-
ation like this. As anyone who is not a theoretical statistician can see
immediately, the circumstance that we might have used another instru-
ment is irrelevant for our conclusions from the measurement that we
actually made. The example is often taken as a standard argument for
the principle that one should condition on an ancillary statistic (in this
case the outcome of the coin toss) whenever one is present.

It is well known how this conditionality principle, together with a prin-
ciple of similar intuitive appeal, the sufficiency principle, can be shown
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to imply the socalled (strong) likelihood principle (see Birnbaum 1962)
which in the present context can be expressed as follows. If two experi-
ments for determination of an unknown quantity result in proportional
likelihood functions, then the conclusions from these two experiments
should be identical.

Unfortunately, this principle questions most of the activities in which
theoretical and applied statisticians are involved. Only strictly subjec-
tive Bayesian methods are consistent with the likelihood principle, and
since these methods have a tendency to question themselves by their
dependence on a more or less arbitrary prior distribution, the statisti-
cal science really has a problem here. The philosophical justification of
what we are actually doing is so weak and self–contradictory that one
would probably tend to give up the whole idea, if it wasn’t for the fact
that statistical methods are so useful and unavoidable in practice.

The purpose of the present paper is not to review the long discussion of
the many obvious principles that one can set up for statistical inference
and their tendency to contradict each other. This has been done by
many other authors, and we would like in particular to draw attention
to the rather complete review by Berger and Wolpert (1984). Our aim
is merely to indicate (section 1 and 2) — without much discussion of
abstract principles — how some of these “paradoxes” come very close to
the surface in a class of simple sequential measurement settings, where
the interpretation of a given situation as “sequential” is sometimes made
impossible by the fact that it would force us to do absurd things in
conflict with common sense. Furthermore, as we shall see in section
3, one such situation comes up in a simplified version of a problem
from econometrics where the presence of the “paradox” questions the
relevance of established econometric methods.

1. A simple sequential experiment.

We proceed with an example which is essentially Cox’s example once
more, but this time in a sequential dress.

Scenario no. 2 (a sequential version of Cox’s example)

A measurement of an unknown quantity µ is performed with error vari-
ance 1. A coin is flipped. If head comes up, 999 additional measurements
(also with variance 1) are performed, otherwise no further measurements
are taken.

(Remark: Here and in the following, measurements are independent and
normally distributed).

Clearly, this is essentially equivalent to our first scenario. The equiva-
lence becomes even more obvious if the coin–flip is assumed to be done
before the first observation, so that we are merely selecting the sample
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size (1 or 1000) at random. However, this apparently innocent change
of the order in which things are done is a crucial point in the examples
to follow. An important assumption in the following is that if we really
want to let coin–tosses determine our actions, then there is no need to
perform the tosses before their outcomes are required.

In our next scenario, again we observe either 1 or 1000 N(µ, 1) random
variables. But the coin–toss of scenario 2 is now replaced with a decision
based on the first measurement.

Scenario no. 3 (a simple sequential scheme)

A measurement Y1 of an unknown quantity µ is performed with error
variance 1. If Y1 is less than a certain constant c, 999 additional mea-
surements (also with variance 1) are performed, otherwise no further
measurements are taken.

This is a proper sequential situation, and things are less transparent here.
However, it is possible to argue that an experiment like this should also
— once it is performed — be interpreted as if the number of measure-
ments had been decided in advance. A Bayesian fundamentalist would
accept this immediately as a consequence of the likelihood principle.
For the rest of us, a more direct and rather convincing argument goes
as follows. Consider

Scenario no. 4

We intend to do as follows. A coin is flipped. If head comes up, we
simply perform 1000 measurements. If tail comes up, we follow the
sequential scheme of scenario 3.

However, since we cannot find a coin right away, and since we are going
to make at least one measurement anyway, we decide to perform the first
measurement while somebody else is taking care of the search for a coin.
This results in a value Y1 < c. A coin is still not available, but since
the next 999 measurements are to be performed anyway, we proceed with
these.

Having performed the 1+999 = 1000 measurements, we proceed with the
final task, which is to find a coin and flip it.

This situation is, of course, absurd. No person with his or her common
sense in behold could possibly be persuaded to regard the final coin–
tossing as an important or informative matter. The problem is that
the coin is supposed to tell us how to interpret our 1000 measurements.
If we are not willing to flip the coin, we are forced to admit that the
outcome of this is irrelevant, hence that the distinction between the two
interpretations of our 1000 measurements is irrelevant. In the language
of Dawid (1991), the production model — which is a rather complicated
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thing here, involving the constant c and the distribution of various statis-
tics under the sequential scheme — can be replaced with the inferential
model which simply assumes the 1000 measurements to be i.i.d. N(µ, 1).

2. A general sequential scheme.

Scenario 3 (and in fact any of the scenarios considered) is a special
case of a more general scheme, which can be explained in terms of an
“instrument manager”. The instrument manager is the person — or rule,
or algorithm, if you wish — who decides for us which instrument to use
next and when to stop the sequence of measurements. The decisions
of the instrument manager may depend on previous measurements. In
principle, it is also possible to let the decisions depend on other things
belonging to the past, including external randomization, but this is not
an important point here and is therefore disregarded in the following.
With this simplification, we can formalize the situation as follows.

Scenario no. 5 (a general sequential scheme)

A finite sequence

Y1 ∼N
(
µ, σ2

1
)

Y2 ∼N
(
µ, σ2

2(Y1)
)

Y3 ∼N
(
µ, σ2

3(Y1, Y2)
)

...

Yn ∼N
(
µ, σ2

n(Y1, . . . , Yn−1)
)

of measurements are performed. The variance of each measurement is a
function of previous measurements, and the normal distributions spec-
ified are conditional, given all previous observations. The number of
observations n is a stopping time.

The last condition can formally be build into the functions σ2
1 , σ2

2 , . . .
by the assumption that we have σ2

i = +∞ from a certain stage with
probability 1. However, if this appears too complicated, it suffices to
think of the case where n is fixed.

Again, we can argue that statistical inference from this experiment
should be performed exactly as if the number of observations n and
the variances σ2

1 , σ2
2 , . . . , σ2

n were known and fixed. An argument, sim-
ilar to our argument for the same principle in scenario no. 3, goes as
follows. Consider

Scenario no. 6

A coin is flipped. If head comes up, we perform ten measurements
by pre–determined instruments with error variances σ2

1 , . . . , σ2
10. If tail
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comes up, we proceed as in scenario 5, following the scheme of the in-
strument manager.
However, a coin is not available right away. We ask the instrument
manager what his first choice would be (just in case . . . ). Most surpris-
ingly, he claims that his first choice would be the instrument with error
variance σ2

1. We decide — since a measurement with that instrument is
to be performed anyway — to perform that measurement, while others
are trying to find a coin.
After the observation of Y1 a coin is still not available. We ask the
instrument manager what his next choice would be. Most surprisingly
. . .
. . . and so on and on and on until . . .

we observe Y10, and the instrument manager claims that this is where
he would like to say stop, if he was asked.
It remains to find a coin and flip it.
Again, we find ourselves in the totally absurd situation of being forced
to let a coin decide for us how to interpret our ten measurements. While
others are continuing the search for a coin, we might even proceed with
two parallel statistical analyses and the writing of two final reports, being
willing, of course, to drop the irrelevant one in the paper basket when
the coin has told us which one it is. It is tempting to take the attitude
that this kind of behaviour has no relevance in the scientific world. But
if we take this attitude we are forced to accept that the final coin toss
is irrelevant. Hence, we are forced to accept that our final analysis of
the measurements should be independent of the coin toss. Hence we
are forced to admit that the sequence of measurements may as well be
interpreted as if head had come up, i.e. as if the ten instruments had
been selected in advance.
It is wellknown that this attitude creates other problems. This is ac-
tually why we are using the word “paradox”. These other problems
will be recalled in section 4. But let us first take a look at one of
the consequences of this “principle of treating a sequentially determined
measurement scheme as if the scheme had been decided in advance”.

3. Testing for an autoregression coefficient equal to 1 in the
AR(1).

Consider the following problem, which is a simplified version of a prob-
lem first discussed (I believe) by Dickey and Fuller (see e.g. Dickey
and Fuller 1981) and later studied intensively by econometricians in the
context of “cointegration” (see e.g. Engle and Granger 1987, Johansen
1991).
Let (X0, X1, . . . , Xn) be an autoregressive process of order 1 with mean 0
and known prediction error variance σ2. By this we mean the following.
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X0 = x0 can be regarded as fixed, since we are going to condition on it
anyway. For convenience, we assume x0 6= 0. X1, . . . , Xn are assumed
to be generated recursively as

Xi = αXi−1 + σUi

where the “normalized prediction errors” U1, . . . , Un are i.i.d. N(0, 1).
Our concern is estimation of the unknown autoregression coefficient α
and, in particular, test of the hypothesis α = 1.

It is easy to transform this to a special case of the “instrument man-
ager scheme” (scenario no. 5). If we define Yi = Xi/Xi−1, we have,
conditionally on previous observations Y1, . . . , Yi−1 (or X1, . . . , Xi−1)

Yi ∼ N
(
α,

σ2

X2
i−1

)
.

Thus, the transformed series Y1, . . . , Yn can be interpreted as a sequence
of measurements of the autoregression coefficient α with variances deter-
mined by the earlier measurements. Following the principle that these
variances should be regarded as predetermined, we obtain (by ordinary
averaging of our measurements with their inverse variances as weights)
the estimate

α̂ =
X2

0Y1 +X2
1Y2 + · · ·+X2

n−1Yn

X2
0 +X2

1 + · · ·+X2
n−1

=
X0X1 +X1X2 + · · ·+Xn−1Xn

X2
0 +X2

1 + · · ·+X2
n−1

which is just the OLS estimate of α obtained by regression (with in-
tercept = 0) of the variate X1, . . . , Xn on its first lag X0, . . . , Xn−1.
Formally, the variance of this estimate is obtained by the rule for addi-
tion of precisions,

var(α̂)−1 =
(
σ2

X2
0

)−1

+ · · ·+
(

σ2

X2
n−1

)−1

,

i.e.

var(α̂) =
σ2

X2
0 +X2

1 + · · ·+X2
n−1

and a test for α = 1 can thus be based on the statistic

U =
α̂− 1√
var(α̂)

which is (formally) N(0, 1) under the hypothesis.
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4. Discussion.

Our solution to the unit–root testing problem would be considered very
controversial by many econometricians, not only because we have over-
simplified the situation (assuming σ2 known, intercept = 0, no covariates
etc.), but especially because the distribution of the test statistic U above
is not a normalized normal distribution when α = 1, not even in the limit
as n→∞. This is so because the random walk behaviour of the AR(1)
for α = 1 implies a random behaviour of the denominator in the expres-
sion for α̂ which is not compensated by the law of large numbers. In
the sequential measurement setting, we can explain this random varia-
tion as a variation of the total information ( = the sum of the inverse
variances), and our interpretation of the variances as pre–determined
implies a sort of “conditioning on the information” which, conceptually,
is very similar to the conditioning on the coin toss in Cox’s classical
example. But here we are not talking about a conditioning in the usual
sense of this word, since that would involve (more or less) a conditioning
on the observations themselves.
Conceptually, this kind of “conditioning”, or whatever it is, is wellknown
in time series analysis. The interpretation of a lagged variable as fixed
when it occurs on the right hand side of a regression equation, even
though it occurs as the random response on the left side of the equation
just above, is an example. A similar idea is known from survival anal-
ysis where the formation of Cox’s partial likelihood involves a similar
recursive conditioning on previous events, including previous responses.
It is tempting to conclude from all this that econometricians are making
life unnecessarily difficult for themselves when they focus on the com-
plicated distribution of the test statistic for α = 1. In fact, my personal
opinion is that they are. But we must not forget, in this context, that the
idea of analysing any sequential experiment by non–sequential methods
has its own traps or “paradoxes”. The classical warning goes something
like this. Consider

Scenario no. 7

I.i.d. measurements Y1, Y2, · · · ∼ N(µ, 1) are taken until |Ȳ −µ0|×
√
n ≥

3, where µ0 is a (pre–determined) constant.
Thus, we are sampling until the usual estimate of µ is at least three stan-
dard deviations from µ0. This happens sooner or later with probability
1, even when µ = µ0. Thus, regardless of whether µ = µ0 or not, the
standard (non–sequential) test for µ = µ0 results in a highly significant
rejection (|U | ≥ 3) with probability 1.
When theory breaks down — as it certainly seems to do here — we are
forced to rely on our intuition and common sense. For my own part, I
can say that when I analyse AR or VAR models I do it unscrupulous by
reference to the standard regression framework, with lagged responses
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taking the same role as other explanatory variables that are relevant for
the prediction, and without much concern about whether the estimated
autoregression coefficient(s) corresponds to a stationary time series, a
series with unit–roots or an exponentially exploding series. To me, the
usual dynamic description of the next observation as a sum of a linear
predictor and an independent error term, provides sufficient justification
for making inference as in an ordinary regression situation. In particular,
if I needed to test the hypothesis α = 1 in the AR(1), I would do it
without hesitation by a standard T–test. I am aware that this attitude
somehow ignores the fact that the test statistic is not T–distributed in
the usual concrete sense. But to me, this problem is not much different
from the “problem” that a test for a simple hypothesis in Cox’s example
(scenario no. 1) should also be based on a distribution which is different
from the marginal distribution of the test statistic. Other researchers,
I know, would feel very uncomfortable with this attitude and prefer
to use the more complicated methods developed in the framework of
cointegration, see e.g. Johansen (1991).

Perhaps the only general and quite safe recommendation that one can
give at present is to try both methods. If they more or less agree,
everything is fine. If they don’t, we may have a problem. My impression
is that the methods tend to agree in most relevant situations (implying
that scenario 7 is somehow pathological), but that is a quite different
story.

5. Prequential inference.

The type of paradoxes discussed here are not new. Some references
related to this kind of problems and attempts to solve them are Oden
(1977), Berger and Wolpert (1984) (with several references to earlier
contributions) and Dawid (1984, 1991). What we have presented here
is just one of the many ways of running into self–contradictions and
paradoxes when foundational issues are discussed. As we have seen
(scenario no. 6), the “principle of ignoring the sequential sampling plan”,
which is a version of Dawid’s prequential principle, is unavoidable. And
as we have also seen (scenario no. 7), this principle does, under certain
circumstances, imply almost sure rejection of a simple hypothesis, even
if it is true.

Our “principle of analysing sequential experiments by non–sequential
methods” refers to a situation where a well–defined sampling scheme is
combined with a well–defined parametric model. Whether the algorithm
determining the sampling scheme — the production model, in Dawid’s
terminology — is known or unknown is irrelevant, because the statistical
inference made from the inferential model depends on this scheme only
through the (formally independent) observations and their (conditional)
distributions. Thus, all we need is the concrete sequence of observa-
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tions and the distributions that came out of the instrument manager’s
algorithm. What would have come out of it in other cases is irrelevant.

So far, we are following Dawid’s prequential principle closely, in the
sense that our principle can be considered a consequence of Dawid’s
prequential principle. It is not quite clear to me whether the converse is
true or not. Dawid’s prequential principle in its original version referred
to a more general framework. The primary issue was prediction, not
estimation of a parameter or test of a hypothesis. A parametric model
was not a necessary ingredient, and at least to begin with there was
no reference to the production model either. Later on, it seems to be
an assumption that the distributions specified by the inferential model
can somehow be derived from a production model as the conditional
distributions of the observations, given the previous observations and
(perhaps) other things from the past. In this sense, the prequential
principle is — perhaps — more or less equivalent to the principle I have
referred to as the “principle of analysing sequential experiments by non–
sequential methods”.

The best argument for this principle is probably the question “what can
we conclude from the sequence of measurements if we don’t know the
instrument manager’s algorithm?” (that is, we know the sequence of
variances, but not how it was constructed). It is fairly obvious that it
must be possible to do something, and by far the simplest — and proba-
bly the only — thing to do is to behave as if the number of measurements
and their variances are determined in advance. But if this is somehow
the correct thing to do, the next immediate question is “would it help
us at all, and would it enable us to do something better, if we knew the
algorithm?”

Vovk (1993) goes a step further in this (or a very close) direction by
explicitely pointing out and attempting to solve a problem which, in our
framework, can be stated as follows. What if the instrument manager
does not use a welldefined algorithm, but makes his choices according
to obscure ideas coming to him from who knows where? One thing is
that we do not need to know the instrument managers algorithm, but
if we cannot even talk about it, we don’t have a production model, and
how can we interpret the marginal distributions of the inferential model
if not as conditional distributions in the production model? This opens
a deep (perhaps interesting, perhaps fruitless) philosophical discussion
of whether or not the behaviour of a conscious person can be assumed
to be controlled by a (possibly randomized) algorithm. To avoid this
discussion, Vovk introduced an entire new logic of probability, which in
turn resulted in a further development of the ideas related to prequential
inference (Dawid and Vovk 1999).

However, this discussion does not necessarily interfere with the ideas
presented here. In our universe, the production model is assumed to
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exist. Our picture of the instrument manager as a person is only a trick,
to emphasize that his decisions are beyond the experimenters control.
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