Opgave 2, eksamen juni 2008.

(a)

Ifølge velkendte regneregler er

$$E(X_1 + 3X_2) = E(X_1) + 3E(X_2) = 4E(X_1) = \mathbf{4}.$$

$$var(X_1 + 3X_2) = var(X_1) + 9var(X_2) = 10var(X_1) = \mathbf{10},$$

idet både middelværdi og varians i den normerede eksponentialfordeling er 1.

(b)

$$P((X_1, X_2) \in ([0, 1[\times[0, 1[) \cup (]1, +\infty[\times]1, +\infty[)))$$

$$= P((X_1, X_2) \in [0, 1[\times[0, 1[) + P((X_1, X_2) \in]1, +\infty[\times]1, +\infty[)$$

$$= P(X_1 \in [0, 1[)^2 + P(X_1 \in]1, +\infty[)^2$$

$$= (1 - e^{-1})^2 + (e^{-1})^2 = (1 - 0.3679)^2 + 0.3679^2$$

= 0.5349.

I den første omskrivning har vi brugt additivitetsreglen, idet $[0, 1] \times [0, 1]$ og $]1, +\infty[\times]1, +\infty[$ er disjunkte. I den anden har vi brugt at X_1 og X_2 er stokastisk uafhængige og identisk fordelte. I den tredje bruges at den normerede eksponentialfordeling har fordelingsfunktionen $1 - e^{-x}$ på $[0, +\infty[$.

(c)

Middelværdien af $\exp(aX_1)$ er givet som integralet

$$\int_0^{+\infty} e^{ax} e^{-x} dx = \int_0^{+\infty} e^{-(1-a)x} dx.$$

For a=1 er integranden konstant lig med 1, og for a>1 er den en voksende funktion, så det er klart at integralet ikke er defineret for $a\geq 0$. For $a\in [0,1[$ er integranden derimod eksponentielt aftagende, og i så fald får vi, ved at regne videre på ovenstående udtryk, idet vi substituerer $x \mod z = (1-a)x$, dx = dz/(1-a),

$$E(\exp(aX_1)) = \int_0^{+\infty} e^{-(1-a)x} dx = \int_0^{+\infty} e^{-z} \frac{dz}{1-a}$$
$$= \frac{1}{1-a} \int_0^{+\infty} e^{-z} dz = \frac{1}{1-a}.$$