Tabeller

Den normale fordelings 1-p fraktiler

рu	p u	p u	p u	p u
0.50 0.000	0.050 1.645	0.0050 2.576	0.00050 3.291	0.000050 3.891
0.49 0.025	0.049 1.655	0.0049 2.583	0.00049 3.296	0.000049 3.895
0.48 0.050	0.048 1.665	0.0048 2.590	0.00048 3.302	0.000048 3.900
0.47 0.075	0.047 1.675	0.0047 2.597	0.00047 3.308	0.000047 3.906
0.46 0.100	0.046 1.685	0.0046 2.605	0.00046 3.314	0.000046 3.911
0.45 0.126	0.045 1.695	0.0045 2.612	0.00045 3.320	0.000045 3.916
0.44 0.151	0.044 1.706	0.0044 2.620	0.00044 3.326	0.000044 3.921
0.43 0.176	0.043 1.717	0.0043 2.628	0.00043 3.333	0.000043 3.927
0.42 0.202	0.042 1.728	0.0042 2.636	0.00042 3.339	0.000042 3.933
0.41 0.228	0.041 1.739	0.0041 2.644	0.00041 3.346	0.000041 3.938
0.40 0.253	0.040 1.751	0.0040 2.652	0.00040 3.353	0.000040 3.944
0.39 0.279	0.039 1.762	0.0039 2.661	0.00039 3.360	0.000039 3.950
0.38 0.305	0.038 1.774	0.0038 2.669	0.00038 3.367	0.000038 3.957
0.37 0.332	0.037 1.787	0.0037 2.678	0.00037 3.374	0.000037 3.963
0.36 0.358	0.036 1.799	0.0036 2.687	0.00036 3.382	0.000036 3.970
0.35 0.385	0.035 1.812	0.0035 2.697	0.00035 3.390	0.000035 3.976
0.34 0.412	0.034 1.825	0.0034 2.706	0.00034 3.398	0.000034 3.983
0.33 0.440	0.033 1.838	0.0033 2.716	0.00033 3.406	0.000033 3.990
0.32 0.468	0.032 1.852	0.0032 2.727	0.00032 3.414	0.000032 3.998
0.31 0.496	0.031 1.866	0.0031 2.737	0.00031 3.423	0.000031 4.005
0.30 0.524	0.030 1.881	0.0030 2.748	0.00030 3.432	0.000030 4.013
0.29 0.553	0.029 1.896	0.0029 2.759	0.00029 3.441	0.000029 4.021
0.28 0.583	0.028 1.911	0.0028 2.770	0.00028 3.450	0.000028 4.029
0.27 0.613	0.027 1.927	0.0027 2.782	0.00027 3.460	0.000027 4.038
0.26 0.643	0.026 1.943	0.0026 2.794	0.00026 3.470	0.000026 4.046
0.25 0.674	0.025 1.960	0.0025 2.807	0.00025 3.481	0.000025 4.056
0.24 0.706	0.024 1.977	0.0024 2.820	0.00024 3.492	0.000024 4.065
0.23 0.739	0.023 1.995	0.0023 2.834	0.00023 3.503	0.000023 4.075
0.22 0.772	0.022 2.014	0.0022 2.848	0.00022 3.515	0.000022 4.085
0.21 0.806	0.021 2.034	0.0021 2.863	0.00021 3.527	0.000021 4.096
0.20 0.842	0.020 2.054	0.0020 2.878	0.00020 3.540	0.000020 4.107
0.19 0.878 0.18 0.915	0.019 2.075 0.018 2.097	0.0019 2.894 0.0018 2.911	0.00019 3.554	0.000019 4.119 0.000018 4.132
0.18 0.913	0.018 2.097	0.0018 2.911	0.00018 3.508	0.000018 4.132
0.17 0.934	0.017 2.120	0.0017 2.929	0.00017 3.583	0.000017 4.145
0.16 0.994	0.016 2.144	0.0016 2.948	0.00016 3.599	0.000016 4.139
0.13 1.030	0.013 2.170	0.0013 2.989	0.00013 3.613	0.000013 4.173
0.14 1.080	0.014 2.197	0.0014 2.989	0.00014 3.653	0.000014 4.189
0.13 1.120	0.013 2.220	0.0013 3.011	0.00013 3.632	0.000013 4.206
0.12 1.173	0.012 2.237	0.0012 3.030	0.00012 3.675	0.000012 4.224
0.10 1.282	0.011 2.230	0.0011 3.002	0.00011 3.035	0.000011 4.244
0.09 1.341	0.009 2.366	0.0009 3.121	0.00009 3.746	0.000009 4.288
0.08 1.405	0.008 2.409	0.0008 3.156	0.00008 3.775	0.000008 4.314
0.07 1.476	0.007 2.457	0.0007 3.195	0.00007 3.808	0.000007 4.344
0.06 1.555	0.006 2.512	0.0006 3.239	0.00006 3.846	0.000006 4.378

Eksempel: Hvis U er normeret normalfordelt er $P(U \ge 2.661) = 0.0039$.

 $\chi^2\text{--fordelingens}\ 1-p$ fraktiler for $f\leq 100$

	1					1
f	p=0.05	p=0.01	p=0.005	p=0.001	p=0.0005	p=0.0001
1	3.841	6.635	7.879	10.828	12.116	15 . 137
2	5.991	9.210	10.597	13.816	15.202	18.421
3	7.815	11.345	12.838	16.266	17.730	21.108
4	9.488	13.277	14.860	18.467	19.997	23.513
5	11.070	15.086	16.750	20.515	22.105	25.745
6	12.592	16.812	18.548	22.458	24.103	27.856
7	14.067	18.475	20.278	24.322	26.018	29.878
8	15.507	20.090	21.955	26.124	27.868	31.828
9	16.919	21.666	23.589	27.877	29.666	33.720
10	18.307	23.209	25.188	29.588	31.420	35.564
11	19.675	24.725	26.757	31.264	33.137	37.367
12	21.026	26.217	28.300	32.909	34.821	39.134
13	22.362	27.688	29.819	34.528	36.478	40.871
14	23.685	29.141	31.319	36.123	38.109	42.579
15	24.996	30.578	32.801	37.697	39.719	44.263
16	26.296	32.000	34.267	39.252	41.308	45.925
17	27.587	33.409	35.718	40.790	42.879	47.566
18	28.869	34.805	37.156	42.312	44.434	49.189
19	30.144	36.191	38.582	43.820	45.973	50.795
20	31.410	37.566	39.997	45.315	47.498	52.386
21	32.671	38.932	41.401	46.797	49.011	53.962
22	33.924	40.289	42.796	48.268	50.511	55.525
23	35.172	41.638	44.181	49.728	52.000	57.075
24	36.415	42.980	45.559	51.179	53.479	58.613
25	37.652	44.314	46.928	52.620	54.947	60.140
26	38.885	45.642	48.290	54.052	56.407	61.657
27	40.113	46.963	49.645	55.476	57.858	63.164
28	41.337	48.278	50.993	56.892	59.300	64.662
29	42.557	49.588	52.336	58.301	60.735	66.152
32	46.194	53.486	56.328	62.487	64.995	70.571
34	48.602	56.061	58.964	65.247	67.803	73.481
36	50.998	58.619	61.581	67.985	70.588	76.365
38	53.384	61.162	64.181	70.703	73.351	79.225
40	55.758	63.691	66.766	73.402	76.095	82.062
42	58.124	66.206	69.336	76.084	78.820	84.879
44	60.481	68.710	71.893	78.750	81.528	87.677
46	62.830	71.201	74.437	81.400	84.220	90.457
48	65.171	73.683	76.969	84.037	86.897	93.221
50	67.505	76.154	79.490	86.661	89.561	95.969
52	69.832	78.616	82.001	89.272	92.211	98.702
54	72.153	81.069	84.502	91.872	94.849	101.421
56	74.468	83.513	86.994	94.461	97.475	104.127
58	76.778	85.950	89 . 477	97.039	100.090	106.821
60	79.082	88.379	91.952	99.607	102.695	109.503
65	84.821	94.422	98.105	105.988	109.164	116.160
70	90.531	100.425	104.215	112.317	115.578	122.755
75	96.217	106.393	110.286	118.599	121.942	129.294
80	101.879	112.329	116.321	124.839	128.261	135.783
85	107.522	118.236	122.325	131.041	134.540	142.226
90	113.145	124.116	128.299	137.208	140.782	148.627
95	118.752	129.973	134.247	143.344	146.990	154.991
100	124.342	135.807	140.169	149 . 449	153.167	161.319

Eksempel: Hvis X er χ^2 –fordelt med 5 frihedsgrader er

$$P(X \ge 16.750) = 0.005$$

$$\chi^2$$
-fordelingen for $f \geq 101$

For $f \ge$ ca. 50 kan man benytte følgende approksimation. Lad X være χ^2 -fordelt med f frihedsgrader. Definer

$$Y = \sqrt{2X} - \sqrt{2\left(f - \frac{2}{3}\right)}$$

og videre

$$U = Y - \frac{2Y^2}{17\left(1 + \sqrt{f}\right)}.$$

Denne størrelse vil, med god approksimation, være normeret normalfordelt.

Eksempel: En χ^2 teststørrelse med 56 frihedsgrader er udregnet til x=80.32. Vi ønsker at beregne den tilsvarende halesandsynlighed $P\left(X\geq 80.32\right)$ for X χ^2 -fordelt med 56 frihedsgrader. Vi udregner

$$y = \sqrt{160.64} - \sqrt{110.667} = 2.1545,$$

$$u = 2.1545 - \frac{2 \times 2.1545^2}{17 \times (1 + \sqrt{56})} = 2.0901.$$

Opslag i normalfordelingstabellen giver herefter $P\left(X \geq 80.32\right) = \text{ca.}$ 0.018.

Disse approksimationsformler kan man bruge hvis man ikke har andre tekniske hjælpemidler til rådighed end en lommeregner. Men ellers må det siges at være en ret gammeldags måde at gøre tingene på. Til tabelopslag i almindelighed (med mulighed for udregning af eksakte P-værdier) kan man f.eks. bruge det lille regnemaskine- og tabelprogram WINT (download fra www.mes.cbs.dk/~sttt).

T–fordelingens 1 — p fraktiler

f	p=0.05	p=0.025	p=0.01	p=0.001	p=0.0001
1	6.314	12.706	31.821	318.309	3183.099
2	2.920	4.303	6.965	22.327	70.700
3	2.353	3.182	4.541	10.215	22.204
4	2.132	2.776	3.747	7.173	13.034
5	2.015	2.571	3.365	5.893	9.678
6	1.943	2.447	3.143	5.208	8.025
7	1.895	2.365	2.998	4.785	7.063
8	1.860	2.306	2.896	4.501	6.442
9	1.833	2.262	2.821	4.297	6.010
10	1.812	2.228	2.764	4.144	5.694
11	1.796	2.201	2.718	4.025	5.453
12	1.782	2.179	2.681	3.930	5.263
13	1.771	2.160	2.650	3.852	5.111
14	1.761	2.145	2.624	3.787	4.985
15	1.753	2.131	2.602	3.733	4.880
16	1.746	2.120	2.583	3.686	4.791
17	1.740	2.110	2.567	3.646	4.714
18	1.734	2.101	2.552	3.610	4.648
19	1.729	2.093	2.539	3.579	4.590
20	1.725	2.086	2.528	3.552	4.539
22	1.717	2.074	2.508	3.505	4.452
24	1.711	2.064	2.492	3.467	4.382
26	1.706	2.056	2.479	3.435	4.324
28	1.701	2.048	2.467	3.408	4.275
30	1.697	2.042	2.457	3.385	4.234
32	1.694	2.037	2.449	3.365	4.198
34	1.691	2.032	2.441	3.348	4.167
36	1.688	2.028	2.434	3.333	4.140
38	1.686	2.024	2.429	3.319	4.116
40	1.684	2.021	2.423	3.307	4.094
45	1.679	2.014	2.412	3.281	4.049
50	1.676	2.009	2.403	3.261	4.014
55	1.673	2.004	2.396	3.245	3.986
60	1.671	2.000	2.390	3.232	3.962
70	1.667	1.994	2.381	3.211	3.926
80	1.664	1.990	2.374	3.195	3.899
90	1.662	1.987	2.368	3.183	3.878
100	1.660	1.984	2.364	3.174	3.862
125	1.657	1.979	2.357	3.157	3.832
150	1.655	1.976	2.351	3.145	3.813
175	1.654	1.974	2.348	3.137	3.799
200	1.653	1.972	2.345	3.131	3.789
300	1.650	1.968	2.339	3.118	3.765
400	1.649	1.966	2.336	3.111	3.754
500	1.648	1.965	2.334	3.107	3.747
∞	1.645	1.960	2.326	3.090	3.719

Eksempel: Hvis T er T–fordelt med 95 frihedsgrader fås (ved lineær interpolation)

$$P(T \ge 2.366) = 0.01$$

F–fordelingens 1 – p fraktiler for $f_1 \leq 15, \, f_2 \leq 15$

De tre tal i hver celle er (1-p)-fraktilerne svarende til p = 0.05 0.01 0.001

f_1	= 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
f_2 =															
	161	200	216	225	230	234		239	241	242	243	244	245	245	246
1	4052	5000	5403	5625	5764	5859	5928	5981	6022	6056	6083	6106	6126	6143	6157
	Ta	illene	e i de	enne :	linie	fås a	af der	n over	ifor	ved mu	ıltip	likat	ion me	d 100)
	18.5	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.4
2	98.5	99.0	99.2	99.2	99.3	99.3	99.4	99.4	99.4	99.4	99.4	99.4	99.4	99.4	99.4
	999	999	999	999	999	999	999	999	999	999	999	999	999	999	999
	10.1	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.76	8.74	8.73	8.71	8.70
3	34.1	30.8	29.5	28.7	28.2	27.9	27.7	27.5	27.3	27.2	27.1	27.1	27.0	26.9	26.9
	167	148	141	137	135	133	132	131	130	129	129	128	128	128	127
	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04		5.96	5.94	5.91	5.89	5.87	5.86
4	21.2	18.0	16.7	16.0	15.5	15.2			14.7		14.5	14.4		14.2	14.2
	74.1	61.2	56.2	53.4	51.7	50.5	49.7		48.5				47.2	46.9	46.8
	6.61	5.79	5.41		5.05	4.95		4.82			4.70	l	4.66	4.64	4.62
5	16.3	13.3	12.1	11.4	11.0	10.7	10.5	10.3		10.1		9.89	9.82	9.77	9.72
	47.2	37.1	33.2	31.1	29.8	28.8	28.2			26.9		26.4	26.2	26.1	25.9
	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15		4.06	4.03	4.00	3.98	3.96	3.94
6	13.7	10.9	9.78		8.75	8.47	8.26			7.87		ı	7.66		7.56
	35.5	27.0	23.7	21.9	20.8	20.0	19.5	19.0		18.4		18.0	17.8	17.7	17.6
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79		3.68			3.57	3.55	3.53	3.51
'	12.2 29.2	9.55	8.45	7.85 17.2	7.46 16.2	7.19 15.5	6.99 15.0		6.72	6.62 14.1	6.54 13.9	6.47 13.7	6.41 13.6		6.31 13.3
	5.32	4.46	18.8	3.84	3.69	3.58	3.50	3.44		3.35	3.31	3.28	3.26	13.4	3.22
8	11.3	8.65	7.59		6.63			6.03					5.61		5.52
	25.4		15.8	14.4	13.5			12.0				11.2			10.8
	5.12	4.26	3.86	3.63	3.48	3.37	3.29			3.14				3.03	3.01
9	10.6	8.02	6.99	6.42	6.06	5.80		5.47					5.05	5.01	4.96
	22.9	16.4	13.9	12.6	11.7	11.1	10.7			9.89		ı	9.44	9.33	9.24
	4.96		3.71					3.07				2.91		2.86	2.85
10	10.0	7.56	6.55	5.99	5.64			5.06				ı	4.65	4.60	
	21.0	14.9	12.6	11.3				9.20						8.22	8.13
	4.84	3.98	3.59	3.36	3.20				2.90			2.79	2.76	2.74	2.72
11	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.63	4.54	4.46	4.40	4.34	4.29	4.25
	19.7	13.8	11.6	10.3	9.58	9.05	8.66	8.35	8.12	7.92	7.76	7.63	7.51	7.41	7.32
	4.75	3.89	3.49	3.26	3.11			2.85				2.69	2.66	2.64	2.62
12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39	4.30	4.22	4.16	4.10	4.05	4.01
	18.6	13.0	10.8		8.89			7.71					6.89	6.79	6.71
	4.67	3.81	3.41		3.03		2.83	2.77		2.67	2.63	2.60	2.58	2.55	2.53
13	9.07	6.70	5.74		4.86			4.30					3.91		3.82
	17.8	12.3	10.2	9.07	8.35			7.21				6.52	6.41	6.31	-
1	4.60	3 74	3.34				2.76			2.60			2.51	2.48	2.46
14	8.86	6.51	5.56		4.69	4.46	4.28			3.94		3.80	3.75	3.70	3.66
	17.1	11.8	9.73		7.92			6.80					6.02	5.93	5.85
,,	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64		2.54		2.48	2.45	2.42	2.40
15	8.68	6.36	5.42		4.56			4.00						3.56	3.52
	16.6	11.3	9.34	8.25	7.57	7.09	b./4	6.47	0.26	16.08	5.94	5.81	5./1	5.62	5.54

Eksempler:

Hvis V er F-fordelt (5,10) er $P(V \ge 3.33) = 0.05$. Hvis V er F-fordelt (8,1) er $P(V \ge 598100) = 0.001$.

F–fordelingens 1 – p fraktiler for $f_1 \leq 15, f_2 \geq 16$

De tre tal i hver celle er (1-p)-fraktilerne svarende til $p = \begin{bmatrix} 0.05 \\ 0.01 \\ 0.001 \end{bmatrix}$

f_1	= 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
f_2 =															
" -	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.46	2.42	2.40	2.37	2.35
16	8.53	6.23	5.29	4.77	4.44		4.03		3.78	3.69	3.62	3.55	3.50	3.45	3.41
	16.1	11.0	9.01	7.94	7.27	6.80	6.46	6.19	5.98	5.81	5.67	5.55	5.44	5.35	5.27
	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.37	2.34	2.31	2.29	2.27
18	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.60	3.51	3.43	3.37	3.32	3.27	3.23
	15.4	10.4	8.49	7.46	6.81	6.35	6.02	5.76	5.56	5.39	5.25	5.13	5.03	4.94	4.87
	4.35	3 . 49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.31	2.28	2.25	2.22	2.20
20	8.10	5 . 85	4.94	4.43	4.10	3.87	3.70	3.56	3.46	3.37	3.29	3.23	3.18	3.13	3.09
	14.8		8.10	7.10	6.46	6.02	5.69	5.44	5.24	5.08	4.94	4.82	4.72	4.64	4.56
١٠٠	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.20	2.16	2.14	2.11	2.09
25	7.77	l .	4.68	4.18	3.85	3.63	3.46	3.32	3.22	3.13	3.06	2.99	2.94	2.89 4.13	2.85 4.06
	13.9 4.17	9.22	7.45	6.49	5.89	5.46	5.15	4.91 2.27	4.71 2.21	4.56 2.16	4.42 2.13	4.31 2.09	2.06	2.04	2.01
30	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.07	2.98	2.13	2.84	2.79	2.74	2.70
1 "	13.3	8.77	7.05	6.12	5.53	5.12	4.82	4.58	4.39	4.24	4.11	4.00	3.91	3.82	3.75
	4.12	3.27	2.87	2.64	2.49	2.37	2.29	2.22	2.16	2.11	2.07	2.04	2.01	1.99	1.96
35	7.42	5.27	4.40	3.91	3.59	3.37	3.20	3.07	2.96	2.88	2.80	2.74	2.69	2.64	2.60
	12.9	8.47	6.79	5.88	5.30	4.89	4.59	4.36	4.18	4.03	3.90	3.79	3.70	3.62	3.55
	4.08	3.23	2.84		2.45	2.34	2.25	2.18	2.12	2.08	2.04	2.00	1.97	1.95	1.92
40	7.31	5 . 18	4.31	3.83	3.51	3.29	3.12	2.99	2.89	2.80	2.73	2.66	2.61	2.56	2.52
	12.6	8.25	6.59	5.70	5.13	4.73	4.44	4.21	4.02	3.87	3.75	3.64	3.55	3.47	3.40
	4.03	3 . 18	2.79	2.56	2.40	2.29	2.20	2.13	2.07	2.03	1.99	1.95	1.92	1.89	1.87
50	7.17	5.06	4.20		3.41		3.02		2.78	2.70	2.63	2.56	2.51	2.46	2.42
	12.2	7.96	6.34	_	4.90		4.22	4.00	3.82	3.67	3.55	3.44	3.35	3.27	3.20
	4.00	3 . 15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.95	1.92	1.89	1.86	1.84
60	7.08	4.98	4.13	3.65	3.34		2.95	2.82	2.72	2.63	2.56	2.50	2.44	2.39	2.35
	12.0	7.77	6.17	5.31	4.76		4.09	3.86	3.69	3.54	3.42	3.32	3.23	3.15	3.08
7.0	3.98	3.13	2.74		2.35		2.14	2.07	2.02	1.97	1.93	1.89	1.86	1.84	1.81
70	7.01	4.92	4.07	3.60	3.29	3.07	2.91		2.67	2.59	2.51	2.45	2.40	2.35	2.31
	11.8 3.96	7.64	6.06 2.72	5.20	4.66 2.33	4.28 2.21	3.99	3.77 2.06	3.60	3.45	3.33	3.23 1.88	3.14	3.06 1.82	2.99
80	6.96	4.88	4.04	3.56	3.26			2.74	2.64	1.95 2.55	2.48	2.42	2.36	2.31	1.79 2.27
1 00	11.7	7.54	5.97	5.12	4.58		3.92	3.70	3.53	3.39	3.27	3.16	3.07	3.00	2.93
	3.95	3.10	2.71	2.47	2.32	2.20	2.11	2.04	1.99	1.94	1.90	1.86	1.83	1.80	1.78
90	6.93	4.85	4.01		3.23		2.84	2.72	2.61	2.52	2.45	2.39	2.33	2.29	2.24
"	11.6	7.47	5.91	5.06	4.53		3.87	3.65	3.48	3.34	3.22	3.11	3.02	2.95	2.88
	3.94	3.09	2.70	2.46	2.31	2.19	2.10	2.03	1.97	1.93	1.89	1.85	1.82	1.79	1.77
100	6.90	4.82	3.98	3.51	3.21		2.82	2.69	2.59	2.50	2.43	2.37	2.31	2.27	2.22
	11.5	7.41	5.86	5.02	4.48		3.83	3.61	3.44	3.30	3.18	3.07	2.99	2.91	2.84
	3.89	3.04	2.65		2.26	2.14	2.06	1.98	1.93	1.88	1.84	1.80	1.77	1.74	1.72
200	6.76	4.71	3.88	3.41	3.11	2.89	2.73	2.60	2.50	2.41	2.34	2.27	2.22	2.17	2.13
	11.2	7.15	5.63	4.81	4.29	3.92	3.65	3.43	3.26	3.12	3.00	2.90	2.82	2.74	2.67
	3.86	3.01	2.62	2.39	2.23	2.12	2.03	1.96	1.90	1.85	1.81	1.77	1.74	1.71	1.69
500	6.69	4.65	3.82	3.36	3.05	2.84	2.68		2.44	2.36	2.28	2.22	2.17	2.12	2.07
	11.0	7.00	5.51	4.69	4.18	3.81	3.54	3.33	3.16	3.02	2.91	2.81	2.72	2.64	2.58

Eksempel: Hvis V er F–fordelt (9,100) er $P(V \ge 2.59) = 0.01$.

F–fordelingens 1 – p fraktiler for $f_1 \geq$ 16, $f_2 \leq 15$

De tre tal i hver celle er (1-p)-fraktilerne svarende til p = 0.05 0.01 0.001

f_1	= 16	18	20	25	30	35	40	50	60	70	80	90	100	200	500
f_2 =															
1 2	246	247	248	249	250	251	251	252	252	252	253	253	253	254	254
1														6350	
-			e i de											ed 100	
	19.4	19.4	19.4	19.5	19.5		19.5	19.5		19.5	19.5	19.5	19.5	19.5	19.5
2	99.4	99.4	99.4		99.5	99.5	99.5	99.5		99.5	99.5	99.5	99.5	99.5	99.5
	999	999	999	999	999	999	999	999	999	999	999	999	999	999	999
	8.69	8.67	8.66	8.63	8.62	8.60	8.59	8.58	8.57	8.57	8.56	8.56	8.55	8.54	8.53
3	26.8	26.8	26.7	26.6	26.5	26.5	26.4	26.4	26.3	26.3	26.3	26.3	26.2	26.2	26.1
	127	127	126	126	125	125	125	125	124	124	124	124	124	124	124
	5.84	5 . 82	5.80	5.77	5.75	5.73	5.72	5.70	5.69	5.68	5.67	5.67	5.66	5.65	5.64
4	14.2	14.1	14.0	13.9	13.8	13.8	13.7	13.7	13.7	13.6	13.6	13.6	13.6	13.5	13.5
	46.6	46.3	46 . 1	45.7	45 . 4	45.2	45.1	44.9	44.7	44.6	44.6	44.5	44.5	44.3	44.1
	4.60	4.58	4.56	4.52	4.50	4.48	4.46	4.44	4.43	4.42	4.41	4.41	4.41	4.39	4.37
5	9.68	9.61	9.55	9.45	9.38	9.33	9.29	9.24		9.18	9.16	9.14	9.13	9.08	9.04
	25.8	25.6	25.4	25.1	24.9	24.7	24.6	24.4		24.3	24.2	24.2	24.1	24.0	23.9
	3.92	3.90	3.87	3.83	3.81	3.79	3.77	3.75	3.74	3.73	3.72	3.72	3.71	3.69	3.68
6	7.52	7.45	7.40	7.30	7.23	7.18	7.14		7.06	7.03	7.01	7.00	6.99	6.93	6.90
	17.4 3.49	17.3 3.47	17.1 3.44	16.9 3.40	16.7 3.38	16.5 3.36	16.4 3.34	16.3 3.32	16.2	16.1 3.29	16.1 3.29	16.1 3.28	16.0 3.27	15.9 3.25	15.8 3.24
7	6.28	6.21	6.16	6.06	5.99	5.94	5.91	5.86	5.82	5.80	5.78	5.77	5.75	5.70	5.67
'	13.2	13.1	12.9	12.7	12.5	12.4	12.3	12.2		12.1	12.0	12.0	12.0	11.8	11.7
	3.20	3.17	3.15	3.11	3.08	3.06	3.04	3.02	3.01	2.99	2.99	2.98	2.97	2.95	2.94
8	5.48	5.41	5.36	5.26	5.20	5.15	5.12	5.07		5.01	4.99	4.97	4.96	4.91	4.88
	10.8	10.6	10.5	10.3	10.1	10.0	9.92	9.80		9.67	9.63	9.60	9.57	9.45	9.38
	2.99	2.96	2.94	2.89	2.86	2.84	2.83	2.80	2.79	2.78	2.77	2.76	2.76	2.73	2.72
9	4.92	4.86	4.81	4.71	4.65	4.60	4.57	4.52	4.48	4.46	4.44	4.43	4.41	4.36	4.33
	9.15	9.01	8.90	8.69	8.55	8.45	8.37	8.26	8.19	8.13	8.09	8.06	8.04	7.93	7.86
	2.83	2.80	2.77	2.73	2.70	2.68	2.66	2.64	2.62	2.61	2.60	2.59	2.59	2.56	2.55
10	4.52	4.46	4.41	4.31	4.25	4.20	4.17	4.12	4.08	4.06	4.04	4.03	4.01	3.96	3.93
	8.05	7.91	7.80	7.60	7.47	7.37	7.30	7.19	7.12	7.07	7.03	7.00	6.98	6.87	6.81
	2.70	2.67	2.65	2.60	2.57	2.55	2.53	2.51	2.49	2.48	2.47	2.46	2.46	2.43	2.42
11	4.21	4.15	4.10	4.01	3.94	3.89	3.86	3.81		3.75	3.73	3.72	3.71	3.66	3.62
	7.24	7.11	7.01	6.81	6.68	6.59	6.52	6.42	6.35	6.30	6.26	6.23	6.21	6.10	6.04
	2.60	2.57	2.54	2.50	2.47	2.44	2.43	2.40	2.38	2.37	2.36	2.36	2.35	2.32	2.31
12	3.97	3.91	3.86	3.76	3.70	3.65	3.62	3.57	3.54	3.51	3.49	3.48	3.47	3.41	3.38
	6.63 2.51	6.51	6.40	6.22	6.09	6.00	5.93	5.83	5.76	5.71	5.68	5.65	5.63	5.52	5.46
13	3.78	3.72	3.66	2.41 3.57	2.38 3.51	2.36	2.34 3.43	2.31	2.30	2.28	2.27	2.27 3.28	2.26	2.23 3.22	2.22 3.19
13	6.16	6.03	5.93	5.75	5.63	5.54	5.47			5.26	5.22	5.19	5.17	5.07	5.01
	2.44	2.41	2.39	2.34	2.31		2.27	5.37	5.30	2.21	2.20	2.19	2.19	2.16	2.14
14	3.62	3.56	3.51	3.41	3.35	3.30	3.27	3.22	3.18	3.16	3.14	3.12	3.11	3.06	3.03
**	5.78	5.66	5.56	5.38	5.25	5.17	5.10	5.00	4.94	4.89	4.86	4.83	4.81	4.71	4.65
	2.38	2.35	2.33	2.28	2.25	2.22	2.20	2.18	2.16	2.15	2.14	2.13	2.12	2.10	2.08
15	3.49	3.42	3.37	3.28	3.21	3.17	3.13	3.08		3.02	3.00	2.99	2.98	2.92	2.89
	5.46	5.35	5.25	5.07	4.95	4.86		4.70			4.56	l	4.51	4.41	4.35
$\overline{}$											_				

Eksempler:

Hvis V er F–fordelt (100,11) er $P(V \ge 6.21) = 0.001$. Hvis V er F–fordelt (80,1) er $P(V \ge 632600) = 0.001$.

F–fordelingen for $f_1 \ge 16, \; f_2 \ge 16$

Her kan man benytte følgende approksimation. Lad V være F-fordelt med (f_1, f_2) frihedsgrader (begge ≥ 16). Definer

$$c_1 = \frac{2}{9f_1}, \ c_2 = \frac{2}{9f_2},$$

og sæt

$$W = V^{1/3} = \exp\left(\frac{\log(V)}{3}\right).$$

Så er

$$U = \frac{(1 - c_2) W - (1 - c_1)}{\sqrt{c_2 W^2 + c_1}}$$

approksimativt normeret normalfordelt.

Eksempel: En F–teststørrelse med (18,36) frihedsgrader er udregnet til 1.236. Vi får

$$c_1 = 0.0123457$$

 $c_2 = 0.0061728$
 $w = 1.0731806$
 $u = 0.5657$

hvorefter opslag i normalfordelingstabellen giver

$$P(V \ge 1.236) = \text{ca. } 0.29.$$