Center for Statistics July 2007
Copenhagen Business School Tue Tjur

Introduction to ISUW

— the Windows version of Interactive StatUnit —

ISUW is a statistics package, a Delphi 5 application based on a collection
of Turbo Pascal (later Borland Pascal) units (i.e. procedure libraries,
roughly) for statistical analysis, developed from around 1990 under the
name StatUnit.

ISUW is distributed free of charge and without any support obligations
from my side. Accordingly, I take no responsibility for errors in the
program. But I would certainly like to hear about them, and correct
them if I can.

The latest version of ISUW can be downloaded from my download page

ezlearn.cbs.dk/stat/hamat-2/tt/

where other useful stuff can also be found.

In this paper I give a short description of the way ISUW functions and
the procedures that are available. Notes on installation and directory
structure are given in the section beginning on page 13. The full de-

scription of all commands can be found on the ISUW “on-line” help file
ISUWHELP.TXT.

Tue Tjur

Copenhagen Business School
The Statistics Group
Solbjerg Plads 3

DK-2000 Frederiksberg

e-mail tuetjur@cbs.dk



How to run ISUW interactively — a brief summary.

ISUW is a statistics package or language. Just to place it somewhere in
the landscape, it is far from the S+ family and far from SAS and SPSS.
ISUW has some similarity with earlier versions of GENSTAT, in beeing
exclusively command driven and not even pretending to help users who
don’t know what they want to do. ISUW’s documentation is, I believe,
rather exhaustive on the technical level, but I would not recommend
anyone to use it as a textbook in statistics.

Compared to GENSTAT, I consider ISUW a lot more friendly in its user
interface and command syntax. But also less general, in many respects.
The limitations of ISUW are perhaps best outlined by some examples
of what it can not do. ISUW can not read an Excel spreadsheet or a
SAS dataset. The only communication available to other programs goes
via text files in free format. Multivariate methods, like factor analysis,
estimation in general variance/covariance component models or general
matrix calculus are not implemented in ISUW. Also, it has no specialised
tools for time series analysis, other than the obvious possibility of us-
ing lagged versions of the response variable as explanatory variables in
a regression model. Phrases like data mining, neural networks, corre-
spondence analysis or automatic model selection can not be found in the
manual.

When you enter ISUW you will probably find it very different from most
other Windows programs. There are no buttons on the screen, no small
pictures of wastepaper baskets, pencils, post boxes or rotating bananas.
There is only a Danish flag which is placed on the “front cover” without
any obvious purpose; it will not switch language or bring you to Denmark
or anywhere else if you click on it.

A general principle behind the design of ISUW — perhaps a reaction
against some tendencies in the opposite direction — is that there should
not be more on the screen than necessary at any time (with the above
mentioned Danish flag as an obvious exception). As a consequence of
this, ISUW is essentially mouse free. You can use the mouse to resize or
move the ISUW window, and it works as usual when you are editing a
program or selecting from a menu. But the buttons that control ISUW
are not placed on the screen, they can be found on the keyboard where
they are a lot easier to hit.

No rule without exceptions, and a useful exception is this. If you drag
the mouse cursor into a window on the screen, a small message with
summary hints (in particular concerning the keys you can use) will pop
up. When, at some point, this becomes more irritating than useful, press
Shift—-F1 to switch this device off.

In the entry dialog for selection of working directory, move around in
the directory tree by the cursor arrows. The Up/Down arrows work in
the obvious way, the Left/Right arrows shift between “show siblings”

2



and “show children”. The space bar can be used for both. Press Return
when the desired working directory is highlighted. If you want to create a
new working directory, press Escape instead of Return, edit the selected
directory name and press Return. Notice that the working directory
must be a subdirectory of the ISUW root directory (probably C:\ISUW,
if you have followed my advices on installation).

To select the same working directory as last time — which is what you
do most of the time — this dialog can be skipped by Return.

The first time you enter ISUW, we recommend that you select DEMOS
as your working directory. This directory has a special status as the
place where the ISUW demonstration programs can be executed. These
programs are more or less self-explanatory, and represent a very easy
way of getting started. But like all such demos they are extremely
boring. Some may prefer to do it the hard way, by trial and error and
reading the on-line manual.

In general, the Escape key is used when you leave a window or dialog
box. Sometimes, in particular in dialogs, you can also leave by Return.
In this case Return means “perform action”, if there is anything to
perform, Escape means “leave without performing”.

In interactive mode, commands are written line by line in the command
field in the bottom of ISUW’s front window and executed when Return
is pressed. In addition to standard editing keys, the following keys are
active.

F1 displays ISUW’s “on-line” help file. This is a single plain text file,
not a web-like tree of help sheets. The first time you press F1, read the
HELP ON HELP section in the top of file.

Ctrl-F1 displays the full command description for the command that
is written in the command field. If a command has not been written, a
menu for selection of command is displayed.

Escape clears the command line.
Escape from an empty command line allows you to QUIT.
Ctrl-Return truncates the command line from the cursors position.

Cursor Up/Down allows you to reuse (and reedit) earlier commands
stacked in the upper window.

Cursor Right/Left with Ctrl completes/replaces command names
lexicographically when the cursor is in the first connected word starting
in position 1.

Cursor Right/Left with Ctrl completes/replaces vector names lex-
icographically when the cursor is in a connected word starting after
position 1.

In addition you can define your own shortkeys, see the description of the
KEYS command.



When a command is written from position 1 of the command field, the
command name is completed automatically as soon as it is unique. Also,
some standard beginnings of commands are completed, like I — IN-
CLUDE, LI — LIST, OP — OPEN, SA — SAVE and SK — SKIP. This means
that the keys you must use to write INCLUDEALL are actually IA (here
you can even use A alone, as a predefined shortkey), whereas to write
SKIPLINE you must type SKL. You will soon learn this, it is impossible
to write anything else than a command from position 1.

You can also import a command to the command field from the com-
mand list associated with the help pages. Press F1 twice, select com-
mand with Cursor Up/Down or the mouse, and press BackSpace or
LeftArrow.

With a blank in position 1, the command line is interpreted as a COMPUTE
command.

The general syntax is
COMMAND [parameterl [parameter2 [...]]]

Thus, parameters are in general separated by blanks. In special cases
(PLOT, TABULATE, ...) a “pseudo blank” |, which can be written by
the 1/2 key in the upper left corner of the keyboard, is used for subdi-
vision of parameters.

When a command produces output, this is shown in a (light green) pre-
view window. Leave this window by Return if you want output appended
to the sessions output file, Escape if you don’t. Use the command SHOW
(without parameters) to look at the sessions output file.

It is possible, and often more convenient, to write an ISUW program (i.e.
a sequence of ISUW commands, each occupying a line) and execute it
by a RUN command. See the command descriptions for EDIT and RUN. In
this case all output is written to the output file without any previewing.
It is also possible to execute a program directly from the program editor
by F9. After this, press F10 to display the output file.

A simple example.
Suppose we have an ASCII (plain text) file EX1.TXT of the form

Dose Response

0.968 0
0.909 1
1.689 1
0.524 0

consisting of a heading and 415 lines, each containing a value of a co-
variate x and a binary response y. This could be data from a classical

4



dose-response study where 415 animals have been given a dose x of some
drug, y being the binary response, e.g. 1 for reaction, 0 for no reaction.
The following commands read this data set and fits a standard logit lin-
ear model with the base 10 logarithm of x as the independent variable,
then fits the model with slope zero and performs the likelihood ratio test
for the corresponding hypothesis of “no drug effect”.

VAR X Y 415 { declares variates to hold data }
OPEN EX1.TXT { opens data file for input }
SKIPLINE { skips heading line }
READ X Y { reads the variates in parallel }
COMPUTE LOG10X=LN(X)/LN(10) { computes base 10 log(X) }
FITLOGIT Y=1+LOG10X { fits logistic regression model }
LISTPARAMETERS { lists parameter estimates }
FITLOGIT Y=1 { fits reduced model }
TEST { tests last against previous model }

In this example, output will be produced by the commands FITLOGIT,
LISTPARAMETERS and TEST. Output from the two FITLOGIT commands
contains information about the number of observations, the number of
parameters estimated and the value of the —2log(likelihood). Most of
the information that you usually want after fit of a model (parameter
estimates, fitted values, residuals, estimates of contrasts etc.) are ex-
tracted by other commands that refer to the last model fit command.
LISTPARAMETERS is an example of such a command. The output from
LISTPARAMETERS is a list of parameter estimates, their estimated stan-
dard deviations, the usual U-statistics (estimates divided by standard
deviations, the Wald statistics) and the corresponding two—sided P-
values for test of hypotheses of the form “parameter = 0”. The output
from TEST contains the likelihood-ratio test (—2log Q) statistic for test
of the last fitted model against the one before and the corresponding
P-value under the usual y?-approximation.

Quite generally, output from ISUW commands is restricted to the nec-
essary minimum. In this respect ISUW is very similar to (and perhaps
even more extreme than) GENSTAT, and very different from SAS and
SPSS.

Variates and factors.

The basic structures in ISUW are called vectors. A vector can be a fac-
tor, an array of bytes for storage of qualitative variables, or a variate, an
array of single precision real numbers (7-8 significant digits) for storage
of quantitative variables. Variates and factors are created by the com-
mands VARIATE and FACTOR. In addition to this, variates (and in a few

5



cases also factors) are often declared implicitly, for example by COMPUTE
commands, like LOG10X in the example above (top of page 5).

ExaAMPLE. To declare two variates X and Y of length 100, write
VAR X Y 100

Notice that we have written VAR, not VARIATE. Actually V would have
been enough here. In ISUW programs, commands can be truncated
as long as they are unambiguous, and in the command field the same
rule applies since commands are completed automatically when they are
recognised.

A value of a variate can be missing, which internally means that it has
the value —-1.0E-37. Missing values are recognised by many commands
and treated appropriately as such.

A factor has, apart from its length, a property called its number of levels,
an integer from 1 to 255 which specifies the maximal level allowed. This
is given as an additional parameter in the declaration.

ExaAMPLE. To declare a factor SEX of length 100 on 2 levels, write
FACTOR SEX 100 2

Names of vectors can be of length up to 8. The first character must
be a letter A..Z or an underbar _ , the remaining characters can also
be digits 0..9. Actually, the special characters #, &, %, $ and @ can
also be used (even as first characters), but in general we recommend
that you don’t, because these characters are sometimes used for special
purposes by ISUW. For example, vectors starting with a dollar sign have
the special property that they are always deleted at exit from a program.

Vector names are case insensitive. In output from ISUW they are usually
written in capitals. The length of a vector can in principle be up to
around 2-3 billions (the upper limit for “long integers”), but since its
values are stored in the computers RAM the realistic upper limit is 1-10
millions, depending on your computer and the number of vectors you
need. At most 255 vectors can be in use simultaneously.

Vectors can be removed from memory (to save capacity or to release
their names) by the command DELETE, and their names can be changed
by the command RENAME.

Input from text files.

The OPENINFILE, READ, SKIPITEM and SKIPLINE commands are designed
for input from ASCII (plain text) files in free format.

EXAMPLE. An ISUW program dealing with a data set of 178 units to
be read from a file F:\HEIGHTS.DAT might begin something like this.

6



FACTOR SEX 178 2
VARIATE AGE HEIGHT 178
FACTOR GROUP 178 6

OPEN F:\HEIGHTS.DAT
READ * SEX AGE HEIGHT GROUP

This READ command assumes that the file has the data in standard
format, like

001 1 23.1 178.2 1
002 2 43.6 173.1 4

where the first unit (or here, person) is a male (SEX=1), of age 23.1, etc.
etc. The only separators allowed are blanks, newline symbols (and, in
fact, any control characters in the range 0-31), commas and semicolons.
The asterix in the READ command implies that the first item for each
unit, (here the unit or line number) is skipped.

The READ command above assumes that factor levels are represented by
their numerical levels. If this is not the case, an equality sign followed
by a comma separated list of level names can be appended to the factor
name. For example,

READ * SEX=%,Male,Female AGE HEIGHT GROUP

would work if the file looked like this.
001 Male 23.1 178.2 1
002 Female 43.6 173.1 4

114 * 32.9 167.0 2

with level 1 of SEX coded as Male, level 2 as Female and level 0 (“the
missing level”) as *.

Values of variates must be in standard format (like 1.2, -0.22, +2.0E7).
The symbol * is recognised as a missing value (for variates only).

Various output commands.

To list the values of a vector or a set of vectors, use the commands
LIST and LIST1. LIST is for parallel listing of vectors (usually of equal
lengths). LIST1 is for listing of single vectors across the page. For
both commands, formats can be used to determine width and number
of digits after the decimal point. With LIST it is also possible to write
factor levels as names.

The command RAMSTATUS displays a list of vectors present and the space
they occupy.

The command SUMMARY can be used to display summary statistics like
mean, variance, max and min.

To write a comment to the output file, use the command REMARK.

7



Data storage

in an internal binary file format is handled by the commands SAVEDATA
and GETDATA. In their simplest form, these commands are used to save
and restore all vectors present in an ISUW session. The command SHOW
can (among many other things) display the contents of a data set without
importing it, with indication of potential name conflicts. ISUW data sets
are files with extension .SUD (for StatUnit Data) — do not try to edit
them or handle them with other tools than ISUW.

Graphics.

The commands PLOT and HISTOGRAM are used for graphics. PLOT pro-
duces scatter plots (one variate against another). Colors and plot sym-
bols can be chosen according to the levels of factors. Points can be
connected by lines as desired, and overlayed plots can be produced. HIS-
TOGRAM produces histograms for variates (or factors), optionally parallel
histograms grouped by the levels of a factor. Headings and axis titles
are controlled by the commands FRAMETEXT, XTEXT and YTEXT. With-
out these specifications reasonable default texts (variate names etc.) are
used.

Graphics can be saved in JPEG format (*.JPG) or as bitmap (*.BMP)
files, for later import to text handling programs or image processing pro-
grams. Graphics of a higher resolution (but without colors) can be pro-
duced via PostScript files, see the descriptions of the commands OPENPS-
FILE, PSFRAME and CLOSEPSFILE. Interactively rotatable 3—d graphics
can be produced by PLOT and HISTOGRAM, by specification of an extra
variate or factor.

Restrictions.

In most applications, data are given as a rectangular data set, i.e. a
number of variates and factors of the same length, which is the num-
ber of “records” or “experimental units” or “patients” or “persons” or
“runs” or “plots” or whatever, depending on the applied context. We
shall use the word units. To restrict attention to a subset of the units
set, use the commands EXCLUDE, INCLUDE, INCLUDEALL, FOCUSONLEVEL,
EXCLUDELEVEL and EXCLUDEMISSING. These commands control a hidden
array of booleans (all TRUE from the beginning), telling which units
are “present”. All ISUW commands for which this is relevant obey re-
strictions, in the sense that only units present are taken into account.
For example, model fit commands and COMPUTE commands act only on
the subset of data specified as “present”.

WARNING. Restrictions act in parallel on all vectors, independently of
their lengths. Parallel restrictions on vectors of different lengths are usu-
ally meaningless. Be careful — use INCLUDEALL as soon as restrictions

8



are no longer required. Special care should be taken in connection with
SORT, SAVEDATA and TABULATE — see the command descriptions.

For convenience, the important command INCLUDEALL can be executed
by pressing A from an empty command field.

Parallel sorting of vectors

is performed by the command SORT. For example, if X and Y are vectors of
the same length, the command SORT X Y will sort the values of the two
vectors in such a way that the values of X are increasing, and the values of
Y are increasing within the tie groups determined by X. Warning: Other
vectors of the same length will not be sorted (unless a special form of
the command is used), and the restriction array is also unchanged. This
opens some obvious possibilites for fatal errors.

Computations.

Unit-by—unit computations are performed by COMPUTE. For example, if P
is a variate with values between 0 and 1, and you want to create another
variate LOGIT_P of the same length holding its logit transformed values,
write

COMPUTE LOGIT_P=LN(P)-LN(1-P)

If the vector LOGIT_P does not exist, it is automatically declared as a
variate of the same length as P. If it does exist, it must be a variate
of that length. Values of P that are missing or not in the range ]0,1]
will result in missing values of LOGIT_P. Factors can also be handled
in this way, and a lot of much more complicated transformations that
are not just “unit by unit” are also possible. See the description of the
COMPUTE command. Once you have learned the rules, ISUW is actually
a quite strong tool for data transformations. See e.g. tutorial no. 6 on
the DEMOS directory.

A COMPUTE command without a left hand side simply displays the result.
For example, to display the mean and standard deviation of (the values
present in) the variate X, just write

COMPUTE mean (X)
COMPUTE sqrt(variance(X))

For convenience, the COMPUTE command can be generated from an empty
command field by pressing the key + (without an equality sign) or =
(including the equality sign). Moreover, if the line in the command field
starts with a blank it is interpreted as a COMPUTE command.

Other ways of assigning values/levels to variates/factors.

GENERATE assigns systematically varying levels to a factor. For example,
if G is a factor of length 20 on 4 levels, the command

9



GENERATE G 3
will assign levels
1112223334441 1122233

to the factor. The level changes cyclically, the last parameter (here 3)
determining the lag between change points.

GROUP is used for construction of a factor by interval grouping of a vari-
ate.

TRANSFER can be used to copy subvector into subvector. For example, if
X is a vector of length 100, to split it into two vectors of length 50, write

VARIATE X1 X2 50

TRANSFER X 1 50 X1 1 50

TRANSFER X 51 100 X2 1 50
TRANSFER can also be used to copy the values or levels present in a given
vector to a new (shorter) vector.

Tables and tabular summation.

ONEWAYTABLE produces one-way tables of counts for factors (number of
units on each level) or variates (counts of values in specified intervals).
Two— or Threewaytables of counts of units or sums of a given variate
over level combinations for two or three factors are produced by the
commands TWOWAYTABLE and THREEWAYTABLE.

The command TABULATE performs counting (of units) or summation (of
variate values) over the cells of a cross classification determined by an
arbitrary number of factors.

Statistical models.

FITLINEARNORMAL is for analysis of variance and regression. Output
consists mainly of an ANOVA table, holding the sums of squares corre-
sponding to removal of terms from the model formula, beginning with
the last (i.e. what SAS users call the type I sums of squares), with the
corresponding F-statistics (unlike SAS with pooled variance estimates
as denominators) and the corresponding P—values.

FITLOGLINEAR is for multiplicative or log-linear models for Poisson or
multinomial data.

FITLOGITLINEAR is for logistic regression models for binary or binomial
data.

FITNONLINEAR is for a class of nonlinear regression models, including the
generalised linear models with overdispersion, user—specified mean (or
inverse link) and variance functions.

FITCOXMODEL is for proportional hazards models by Cox’s likelihood,
optionally with right censoring, left truncation and stratification.

10



FITMCLOGIT, FITMCPROBIT and FITMCCLOGLOG are for ordered categori-
cal response models as described by P. McCullagh (JRSS B 42, 109-142),
where the responses are assumed to be the result of a grouping with un-
known cutpoints of continuous data from a linear position parameter
model with error distribution logistic, normal or Compertz.

FITCLOGIT is for conditional logistic regression (like in matched case-
control studies). FITCRASCH is for a special case of this, the conditional
Rasch model (two way logit—additive model for binary data by condition-
ing on the row sums, arbitrary linear structure for column parameters).

FITNEGBIN is for log-linear models for negative binomial data, usually
coming up as “Poisson data with overdispersion”.

FITANOVA is for analysis of variance, including random effects or variance
component models, in balanced orthogonal designs.

After any model fit command except FITANOVA, the command LIST-
PARAMETERS produces a listing of the estimated parameters in the last
model fitted, and the command SAVEFITTED can be used for extraction
of fitted values, residuals and normed residuals from the last model fit-
ted (whenever this makes sense, see the command descriptions). See also
the command SAVEPARAMETERS, which can be used if you want to do fur-
ther calculations involving the parameter estimates and their estimated
standard devitations, and the command SAVENORMEDRESIDUALS, which
can be used after FITLINEARNORMAL to compute exact T—distributed
(“studentised”) normed residuals. TESTMODELCHANGE can be used for
computation of the likelihood ratio test or F—test for model reduction
when two nested models have been fitted by any model fit command
except FITANOVA. ESTIMATE (which can also be used in a special version
after FITANOVA) outputs the estimates of specified linear combinations
of the parameters and their estimated standard deviations.

All model fit commands involve the concept of a model formula, i.e. a
code for a linear expression involving linear effects of covariates, addi-
tive effects of factors, interactions between factors etc. This concept is
carefully explained in the description of FITLINEARNORMAL. The syntax
is similar to the basic syntax common to most statistics packages, but
there are some important differences. SAS users should be aware that
the status of an explanatory variable as a “class” variable is determined
by its type (factors are always “class” variables, variates never are).
GENSTAT users should be aware that the + and * operators in ISUW
roughly play the same role as + and . in GENSTAT, other operators are
not allowed. But here the rules are different in many respects. The rules
in ISUW are such that the model matrix is generated from the model
formula by the simplest possible algorithm. Users of almost any other
package than ISUW should be aware that a constant term (intercept),
written as 1, must be present in the model formula if it should be in the
model.

11



WARNING. The model matrix (or design matrix) determined by a model
formula is not physically stored. What is kept is a code telling how
to compute its elements from values or levels of existing variates and
factors. Commands referring to the last model fit use the actual val-
ues/levels of vectors occurring in the last model. If these have been
changed, incorrect results will come out. If some of them have been
deleted, the information that can be extracted is reduced accordingly.
For example, if some of the independent variables (or an offset variable,
if such was present) has been deleted, SAVEFITTED will not work. If the
response variate has been deleted, SAVEFITTED will be able to produce
fitted values, but not residuals and normed residuals. Similarly, if a
weight variate has been deleted, only fitted values and residuals, but
not normed residuals, can be produced.

Tests, non—parametrics and descriptive statistics.

The command WILCOXON performs a two—sample Wilcoxon or Mann—
Whitney test.

The command SPEARMAN computes Spearmans rank correlation and per-
forms the test for “no ordinal correlation”.

The command BARTLETT performs Bartlett’s test for variance homogene-
ity in a one-way setting.

The command CORMAT writes the matrix of correlations for a set of vari-
ates, with optional indication of significances.

Calling other programs.

Other Windows programs (or documents to be opened by applications
determined by their file extensions) can be called directly from ISUW by
a SHELL command. For example, to edit a file PRG.ISU with NotePad
(if you prefer this for ISUW’s EDIT command), use the command

SHELL NOTEPAD PRG.ISU

Programming the keyboard.

The function keys F2..F12, alone or in combination with Alt, Ctrl or
Shift, and the keys A..Z and 0..9 in combination with Alt or Ctrl can
(with certain exceptions that are used for other things) be programmed.
For example, the command

KEY A0 SHOW!

will imply that the sessions output file is displayed whenever Alt—O is
pressed (the exclamation sign means “Return”).

Your programmed keys are automatically saved on exit and recovered
at next startup under the same ISUW root directory.

12



ISUW programs.

ISUW commands can be written line by line on text files by commands
of the form

EDIT program

and executed by F9 from the editor or by a RUN command from the
command field.

Programs are saved as plain text files with extension .ISU . Make sure

that you include this extension in the program name if you use another
editor than ISUW’s own.

To avoid long lines in programs, you can split them up by the “append—
next-line symbol” \. Empty lines can be inserted and lines can be
indented as desired to make the program more readable. Comments can
be included in two ways:

(1) Lines starting with a percentage sign % are ignored.
(2) Text in curled parentheses { } within a line is ignored.

As opposed to REMARKSs, such comments are not echoed to the output
file.

A primitive device for parameter substitution is also available, see the
description of the command SUBSTITUTE. The command GOTO can be
used for conditional branching and loops.

In programs, command names (but not vector names) can be truncated
as long as they are unique. The command name COMPUTE can be omit-
ted for COMPUTE commands with a left hand side. COMPUTE commands
without a left hand side can be written with an equality sign = or a plus
+ as the first character of the expression to display.

A more primitive way of executing the commands on a text file can be ac-
tivated by the command OPENCOMMANDFILE. You can use this command
to import the lines of an ISUW program line by line to the command
field. The advantage of this “slow mode” execution is that you can skip
commands, modify the commands imported and use other commands in
between. The demonstration programs on the directory DEMOS under
the ISUW root directory are executed in this way.

Installation and directory structure.

To install ISUW, download the file ISUWINST.EXE to an empty di-
rectory on your harddisk. We recommend C:\ISUW to keep file names
short. Unpack this “selfunpacking” file by executing it, for example by
double clicking on it from Windows Explore, or calling it by its name
from the Run window or a command (MS-DOS or equivalent) window

from the same directory. This operation results in the creation of four
files,

13



ISUW.EXE (the executable program)

ISUWHELP.TXT (the "on-line" help file)

BORLNDMM.DLL (Delphi system file for memory management)
DEMOS .EXE (self-unpacking pack of DEMOS files)

After this ISUWINST.EXE can be deleted. The entire ISUW package
occupies less than 2 MB of the harddisk.

To install a new version of ISUW, overwriting the old version, sim-
ply repeat this. Here you can avoid four confirm—overwrite—dialogs by
use of the option —o, i.e. by writing ISUWINST -o rather than just
ISUWINST.

In the following we refer to two directories,

1. The ISUW root directory. This is the place where the files SHORT-
KEY.TXT and SHORTKEY.BIN, holding your shortkey definitions, are
kept, and the file LASTDIR keeping the name of the last sessions work-
ing directory, your latest selection of size and position on the screen of
the ISUW window and your latest choice of “hint mode” on/off.

If nothing else is specified, the ISUW root directory becomes the direc-
tory where you placed the four system files. But you can (and should,
if the system files are placed on a shared network drive) define the
ISUW directory as any other directory by giving a valid directory name
(including drive letter and colon) as the first parameter in the call of
ISUW.EXE. You can have several ISUW root directories for different
applications, if you wish. If you ever get the (probably rather useless)
idea of having two or more ISUW sessions running at the same time,
make sure you do it from different ISUW root directories, otherwise
there will be file sharing conflicts. However, ISUW makes some initial
file checks that will usually prevent this error.

2. The ISUW working directory. This directory, which (with an excep-
tion to be explained below) must be a subdirectory (or sub—sub etc.)
of the ISUW root directory, is selected (and sometimes created) from a
dialog box when the session begins. Typically, you will use the same di-
rectory again and again, in this case you can skip the dialog by Return.
The working directory is the place where all sorts of output is placed
by default, and also the place where you will typically place data files
before or during the session. The working directory becomes the current
Windows directory throughout the session, which means that file names
without a path specification refer to files on that directory.

The working directory can be selected directly in the call of ISUW.EXE
by specification of the full name (including drive letter and colon) of an
existing directory as the second parameter in the call of ISUW.EXE.
In this case the working directory does not have to be a subdirectory
of the ISUW root directory. The entry dialog is skipped, and the file
LASTDIR is left unchanged.

14



Here, you can also extend the name of the desired working directory to
the full name of an existing file with extension either ISU or SUD on
that directory. In the first case, the ISU program is executed, in the
second case the ISU data set is imported. This is useful if you want to
set up your Windows computer in such a way that double clicking from
Windows Explore on an ISU program or an ISU data set results in a
startup of ISUW with the appropriate action. Write a command file -
say ISUWBAT.BAT - containing a single line of the form

C:\ISUW\ISUW.EXE C:\ISUW %1

and make this your Windows default application for opening .ISU and
.SUD files (Click Tools — Folder Options — File Types from Windows
Explore).

If both directories are specified as the first two parameters to ISUW.EXE,
additional parameters can be added. These parameters should consti-
tute a valid ISUW command, which will be copied to the command field.
If, in addition, the last of these parameters ends with an exclamation
sign, the command will be executed immediately at entry to the pro-
gram. In this way you can build some standard initialization into the
call of ISUW, like import of a data set, execution of an ISUW program
defining some local shortkeys or whatever.

EXAMPLE. On the computer I use at work, I have placed the ISUW
system files on a directory named C:\DELPHI\ISUW1 because I am
developing ISUW under Borland Delphi. However, my (only) ISUW
root directory is C:\ISUW. Thus, the shortcut starting ISUW from my
desktop has as its “target property” the command

C:\DELPHI\ISUWI\ISUW.EXE C:\ISUW
However, I have a main application of ISUW related to a course called

MPAS. For that reason, I have another shortcut on my desktop with the
command

C:\DELPHI\ISUWI\ISUW.EXE C:\ISUW C:\ISUW\MPAS\07

in the target field, which means that I can go directly to this application
without any entry dialog. Next year I am probably going to change 07
to 08, after having created C:\ISUW\MPAS\08

In between, I add a third and fourth parameter of the form GET DATA!
to load a certain data set automatically at startup.

Another way of specifying automatic initialization goes as follows. If an
ISUW program named AUTOEXEC.ISU exists on a working directory,
this program is executed automatically at startup from that working
directory. This works quite generally — i.e. also when the working
directory is selected from the dialog.

15



Output.

ISUW writes output to a temporary file on the ISUW root directory
named ISUWOUT.TMP. This is the file you look at in a somewhat
modified form by the command SHOW. When an ISUW session ends you
will be asked if you want to save this file on the working directory under
another name. If you answer “No” here, the output file is lost. In spite
of some special effects created by the SHOW command (ISUW prompts
beeing replaced with special colors of command lines, error messages
and notes beeing printed in special colors, REMARKS in italics etc.), ISUW
output files are ordinary text files which can be edited and printed e.g.
by NotePad or imported to standard text handling programs.

Whenever a command sent from the command field produces written
output, this is shown in a light green preview window, which you leave
by Return if you want output appended to ISUWOUT.TMP, Escape if
you don’t. For commands in a program executed by a RUN command the
rule is different. Here, all output is written directly to ISUWOUT.TMP,
unless you redirect it explicitely to another file (or the “wastpaper bas-
ket” NUL) by an OUTFILE command.

Commands and error messages are echoed to the output file by default.
This means that the ISUW output file will contain a complete log of
what has happended during the session. In some cases (for example to
avoid echoes of the same GOTO loop again and again) you may prefer to
switch this default off by an ECHO command. It is recommended that
you keep the output file short, because the conversion of a long file to the
format that ISUW SHOWs it in takes some time. Do not keep LISTings
of large datasets, they are useless anyway. Unless you do it to create an
input file for another program — but in this case it is better to create a
seperate file by an OUTFILE command.

Uninstalling ISUW.

ISUW does not make any hidden changes to your computers setup, and
does not create files under other directories than the ISUW root direc-
tory (unless you do it intentionally, for example by selection of working
directories elsewhere). Thus, the uninstallation is in principle just a
matter of removing the ISUW root directory, after having copied what
you want to keep to other directories. The shortcuts that you may have
created are easy to remove.

16



